CHEMICAL KINETICS

1.	The activation energies of	1 two reactions are L_1 and L_2	$L_2(L_1 > L_2)$. If the tempera	iture of the system is
	increased from T_1 to T_2 , th	ne rate constant of the reac	tions changes from k_1 to k_2	$_{1}$ in the first reaction and k_{2}
	and k_2 in the second react	tion. Predict which of the fo	ollowing expression is corr	ect?
			c) $\frac{k_1'}{k_1'} < \frac{k_2'}{k_2'}$	
	$a) \frac{1}{k_1'} = \frac{1}{k_2'}$	$\frac{1}{k_1'} > \frac{1}{k_2'}$	c) $\frac{k_1'}{k_1'} < \frac{k_2'}{k_2'}$	$d)\frac{k_1'}{k_1'} = \frac{k_2'}{k_2'} = 1$
2.	Effective collisions are the	ose in which molecules mu	st:	
	a) Have energy equal to o	r greater than the threshol	d energy	
	b) Have proper orientation			
	c) Acquire the energy of a	activation		
	d) All of the above			
3.	Consider the following sta			
		catalysed hydrolysis of an e	ster being given as	
	$Rate = k[H^+][ester] = k$			
		s doubled at constant ester	concentration	
	1. The second order rate of			
	2. The pseudo first order			
	3. The rate of the reaction			
	Which of the above staten			
	a) 1 and 2	b) 2 and 3	c) 1 and 3	d) 1,2 and 3
4.		on their respectages of the state of the sta	tive concentration is 400 a	nd 50 respectively.
	The order of reaction is			
	a) 0	b) 2	c) 1	d) 4
5.	The units of rate of reaction		191	
	a) L mol ⁻¹ s ⁻¹	b) mol L ⁻¹ s ⁻¹	c) mol s ⁻¹	d) None of these
6.		irst and zero order reaction	72	
	a) s^{-1} , M s^{-1}	b) s ⁻¹ , M	c) $M s^{-1}, s^{-1}$	d) M, s^{-1}
7.	The half time of a second		95 192 22	
		to the square of the initial		nnts
	5 25 25 5	to the initial concentration		
		tial concentration of reacta		
	- 1 Bull 10 10 10 10 10 10 10 10 10 10 10 10 10	ial concentration of reacta	nts	
8.	$\frac{1}{[A]^2}$ vs times are a straight	line. Order of reaction is		
	a) First	b) Second	c) Zero	d) Third
9.	For an endothermic react	ion where, ΔH represents t	the enthalpy of the reaction	in kJ/mol, the minimum
	value for the energy of act	tivation will be		
	a) Less than ΔH	b) Zero	c) More than ΔH	d) Equal to ΔH
10.	The unit of rate constant i			
	a) L s ⁻¹	b) $L \text{ mol}^{-1} \text{ s}^{-1}$	c) mol L ⁻¹ s ⁻¹	d) $mol s^{-1}$
11.	What is the formula to fin	d value of $t_{1/2}$ for a zero or	der reaction?	

a)	k		
aj	$\overline{[R]_0}$		

b)
$$\frac{2k}{[R]_0}$$

c)
$$\frac{[R]_0}{2k}$$

d)
$$\frac{0.693}{k}$$

12. For the reaction, $A + B \rightarrow C + D$. The variation of the concentration of the products is given by the curve:

a) X

b) Y

c) Z

d) W

- Acid hydrolysis of sucrose is a
 - a) Pseudo first order reaction

b) Zero order reaction

c) Second order reaction

- d) Unimolecular reaction
- 14. For a first order reaction the graph log [A] vs t is given below

x is equal to

a)
$$\frac{0.693}{k}$$

b)
$$\frac{k}{2.303}$$

c)
$$-\frac{k}{2303}$$

- d) $\log [A]_0$
- 15. The rate constant of a first order reaction is $4 \times 10^{-3} \text{sec}^{-1}$. At a reactant concentration of 0.02 M, the rate of reaction would be:

a)
$$8 \times 10^{-5} M \text{ sec}^{-1}$$

b)
$$4 \times 10^{-3} M \text{ sec}^{-1}$$

b)
$$4 \times 10^{-3} M \text{ sec}^{-1}$$
 c) $2 \times 10^{-1} M \text{ sec}^{-1}$

- d) $4 \times 10^{-1} M \text{ sec}^{-1}$
- 16. The rate constant for the reaction, $2N_2O_5 \rightarrow 4NO_2 + O_2$ is $3.0 \times 10^{-5} s^{-1}$. If the rate is $2.4 \times 10^{-5} s^{-1}$. $10^{-5} mol L^{-1} s^{-1}$ then the concentration of $N_2 O_5$ (in $mol L^{-1}$) is
 - a) 0.04
- b) 0.8

- c) 0.07
- d) 1.4

- 17. Activation energy of a reaction is:
 - a) The energy released during the reaction
 - b) The energy evolved when activated complex is formed
 - c) Minimum amount of energy needed to overcome the potential barrier of reaction
 - d) The energy needed to form one mole of the product
- 18. The activation energy for a reaction is 9.0 Kcal/mol. The increase in the rate constant when its temperature is increased from 298 K to 308 K is:
- b) 100%
- c) 50%
- 19. The rate of first order reaction, $A \rightarrow \text{Products}$, is $7.5 \times 10^{-4} \text{mol litre}^{-1} \text{sec}^{-1}$. If the concentration of A is 0.5 mol litre⁻¹ the rate constant is:
 - a) $3.75 \times 10^{-4} \text{sec}^{-1}$
- b) $2.5 \times 10^{-5} \text{sec}^{-1}$ c) $1.5 \times 10^{-3} \text{sec}^{-1}$
 - d) $8.0 \times 10^{-4} \text{sec}^{-1}$

20. $2N_2O_5 \rightleftharpoons 4NO_2 + O_2$

For the above reaction which of the following is not correct above rates of reaction?

a)
$$\frac{-d[N_2O_5]}{dt} = 2\frac{d[O_2]}{dt}$$

b)
$$\frac{-2d[N_2O_5]}{dt} = \frac{d[NO_2]}{dt}$$

c)
$$\frac{d[NO_5]}{dt} = 4\frac{d[O_2]}{dt}$$

b)
$$\frac{-2d[N_2O_5]}{dt} = \frac{d[NO_2]}{dt}$$

d) $\frac{-2d[N_2O_5]}{dt} = 4\frac{d[NO_2]}{dt} = \frac{d[O_2]}{dt}$

21. A substance undergoes first order decomposition. The decomposition follows to parallel first order reactions as:

The percentage distribution of *B* and *C* are:

- a) 80% B and 20% C
- b) 76.83% B and 23.17% C
- c) 90% B and 10% C
- d) 60% B and 40% C
- 22. In Arrhenius plot intercept is equal to
 - a) $-E_a/R$
- b) $\ln A$

c) $\ln k$

- d) $\log_{10} a$
- 23. Half-life period of a first order reaction is 1386 seconds. The specific rate constant of the reaction is:
 - a) $5.0 \times 10^{-2} \text{s}^{-1}$
- b) $5.0 \times 10^{-3} \text{s}^{-1}$
- c) $0.5 \times 10^{-2} \text{s}^{-1}$
- d) $0.5 \times 10^{-3} \text{s}^{-1}$

- 24. On addition of AgNO₃ to NaCl, white ppt. occurs:
 - a) Instantaneously
 - b) With a measurable speed
 - c) Slowly
 - d) None of these
- 25. Which is correct about zero order reaction?
 - a) Rate of reaction depends on decay constant.
 - b) Rate of reaction is independent of concentration.
 - c) Unit of rate constant is conc⁻¹
 - d) Unit of rate constant is conc⁻¹ time⁻¹
- 26. The half-life period of a first order reaction is 1 min 40 s. Calculate its rate constant.
 - a) $6.93 \times 10^{-3} min^{-1}$
- b) $6.93 \times 10^{-3} s^{-1}$
- c) 6.93×10^{-3} s
- d) $6.93 \times 10^3 s$
- 27. The reaction $2A + B + C \rightarrow D + E$ is found to be first order in A, second in B and zero order in C. What is the effect on the rate of increasing concentration of A, B and C two times?
 - a) 72 times
- b) 8 times
- c) 24 times
- d) 36 times

- 28. In a reaction, the threshold energy is equal to:
 - a) Activation energy + normal energy of reactants
 - b) Activation energy normal energy of reactants
 - c) Activation energy
 - d) Normal energy of reactants
- 29. Which one is not correct?
 - a) Rate of zero order reaction depends upon initial concentration of reactant
 - b) Rate of zero order reaction does not depend upon initial concentration of reactant
 - c) $t_{1/2}$ of first order reaction is independent of initial concentration of reaction
 - d) $t_{1/2}$ of zero order reaction is dependent of initial concentration of reaction
- 30. A reaction proceeds by first order, 75% of this reaction was completed in 32 min. the time required for 50% completion is
 - a) 8 min
- b) 16 min
- c) 20 min
- d) 24 min

31. The rate of the reaction

 $CCl_3CHO + NO \rightarrow CHCl_3 + NO + CO$ is equal to rate $k[CCl_3CHO][NO]$. If concentration is expressed in mol/L.

- The unit of k is
 - a) $L \text{ mol}^{-1} \text{ s}^{-1}$
- b) $mol L^{-1} s^{-1}$
- c) $L^2 \text{ mol}^{-2} \text{ s}^{-1}$

32. Observe the following reaction,

$$2A + B \rightarrow C$$

The rate of formation of C is $2.2 \times 10^{-3} mol \ L^{-1} \min$.

CLICK HERE (>>

45. A graph plotted between $\log t_{50\%} vs. \log a$ concentration is a straight line. What conclusion can you draw from the given graph?

- a) $n = 1, t_{1/2} = \frac{1}{K \cdot a}$ b) $n = 2, t_{1/2} = 1/a$ c) $n = 1, t_{1/2} = \frac{0.693}{K}$
- d) None of the above
- 46. If a is the initial concentration then time required to decompose half of the substance for nth order is inversely proportional to:
 - a) a^n

- b) a^{n-1}
- c) a^{1-n}
- d) a^{n-2}

47. The hydrolysis of ethyl acetate,

 $CH_3COOC_2H_5 + H_2O \xrightarrow{H^+} CH_3COOH + C_2H_5OH is:$

- a) First order
- b) Second order
- c) Third order
- d) Zero order
- 48. The rate law for a reaction between the substances A and B is given by

rate = $k[A]^n[B]^m$. On doubling the concentration of A and halving the concentration of B, the ratio of the new rate to the earlier rate of the reaction will be as

- a) $\frac{1}{2^{m+n}}$
- b) (m+n)
- c) (n-m)
- d) $2^{(n-m)}$

49. For the reaction

 $H_2(g) + Br_2(g) \rightarrow 2HBr(g)$

The experimental data suggest

rate = $k[H_2][Br_2]^{1/2}$

the molecularity and order of the reaction are respectively

a) $1, \frac{1}{2}$

b) 1, 1

- d) 2, $\frac{3}{2}$

- 50. The rate of reaction increases with temperature due to
 - a) Decrease in activation energy
- b) Increase in activation energy
- c) Increase in collision frequency
- d) Increase in concentration
- 51. In a first order reaction, the concentration of the reactant is decreased from 1.0 M to 0.25 M in 20 minute. The rate constant of the reaction would be:
 - a) $10 \, \text{min}^{-1}$
- b) $6.931 \, \text{min}^{-1}$
- c) $0.6931 \, \text{min}^{-1}$
- d) $0.06931 \, \text{min}^{-1}$

52. The reaction obey I order with respect to H₂ and ICl both

$$H_2(g) + 2ICI(g) \rightarrow 2HCI(g) + I_2(g)$$

Which of the following mechanism is in consistent with the given fact?

Mechanism $A: H_2(g) + 2ICI \rightarrow 2HCl(g) + I_2(g)$

 $\mathsf{Mechanism}\,B{:}\,(\mathsf{i})\;\mathsf{H}_2(\mathsf{g})+\mathsf{ICl}(\mathsf{g}) \stackrel{\mathsf{slow}}{\longrightarrow} \mathsf{HCl}(\mathsf{g})+\mathsf{HI}(\mathsf{g})$

(ii)
$$HI(g) + ICI(g) \rightarrow HCI(g) + I_2$$

- a) A and B both
- b) Neither A nor B
- c) A only
- d) B only
- 53. Two reactions $A \to \text{products}$ and $B \to \text{products}$ have rate constants K_A and K_B at temperature T and activation energies E_A and E_B respectively. If $K_A > K_B$ and $E_A < E_B$ and assuming that A for both the reactions is same, then:
 - a) At higher temperatures K_A will be greater than K_B
 - b) At lower temperature K_A and K_B will differ more and $K_A > K_B$
 - c) As temperature rises K_A and K_B will be close to each other in magnitude
 - d) All of the above
- 54. The half life for a reaction ... of temperature.
 - a) Independent
 - b) Increased with increase
 - c) Decreased with increase

	d) Dependent		
55.	The following mechanism has been proposed for the	reaction of NO with Br_2 to	o form NOBr
	$NO(g) + Br_2(g) \rightleftharpoons NOBr_2(g)$		
	$NOBr_2(g) + NO(g) \rightarrow 2NOBr(g)$		
	If the second step is the rate determining step, the or	rder of the reaction with re	espect to NO(g) is
	a) 1 b) 0	c) 3	d) 2
56	The unit and value of rate constant and that of rate of	· · · · · · · · · · · · · · · · · · ·	-,-
	a) Zero order b) First order	c) Second order	d) Third order
57	According to collision theory of reaction rates:	cj becond order	a) Time order
37.	a) Every collision between reactants leads to chemic	ral reaction	
	_		
	b) Rate of reaction is proportional to velocity of mol		
	c) All reactions which occur in gaseous phase are ze		
5 0	d) Rate of reaction is directly proportional to collision	했다. 그리스 사이를 위한 입니다. [4]	2 75 Per 1
58.	Half-life of a reaction is found to be inversely propor	tional to the cube of initial	concentration. The order
	of reaction is	.0.21	
	a) 4 b) 3	c) 5	d) 2
59.	A reaction involving two different reactants can nev		
	a) Bimolecular reaction	b) Second order reaction	
	c) First order reaction	d) Unimolecular reaction	
60.	For the non-equilibrium process, $A + B \rightarrow Product$	s, the rate is first order w	ith respect to A and second
	order respect to B. If 1.0 mole each of A and B are	introduced into a 1 litre ve	essel and the initial rate was
	1.0×10^{-2} mol/litre-sec. The rate (in mol litre ⁻¹ sec	z^{-1}) when half of the react	ants have been used:
	a) 1.2×10^{-3} b) 1.2×10^{-2}	c) 2.5×10^{-4}	d) None of these
61.	The activation energy of a reaction is zero. The rate	constant for the reaction	(2 7)
	a) Decreases with decrease of temp	b) Increases with increas	e of temp
	c) Decreases with increase of temp	d) Is nearly independent	100 may 2 mm 1 mm 1 mm 2 mm 1 mm 2 mm 1 mm 1 m
62.	The burning of coal represented by the equation;	The state of the s	
	increased by:		
	a) Decrease in the concentration of oxygen		
	b) Powdering the lumps of coal		
	c) Decreasing the temperature		
	d) Providing inert atmosphere for burning		
63.	At room temperature, the reaction between NO and	O2 to give NO2 is fast, while	le that between CO and O2 is
	slow. It is due to:		
	a) CO is smaller in size than that of NO		
	b) CO is poisonous		
	The activation energy for the reaction,		
	c) $2NO + O_2 \rightarrow 2NO_2$ is less than		
	$2CO + O_2 \rightarrow 2CO_2$		
	d) None of the above		
64.	The rate of first order reaction is $1.5 \times 10^{-2} mol \ L^{-1}$	-1	6:1
		min at 0.5 M concentratio	n of the reactant. The nair-
	life of reaction is		
	a) 0.383 min b) 23.1 min	c) 8.73 min	d) 7.53 min
65.	The rate constant of a first order reaction at 27°C is	실었다	ure coefficient of this
	reaction is 2. What is the rate constant (in min ⁻¹) at		50-0 Voc 10 2 5
	a) 10^{-3} b) 5×10^{-4}	c) 2×10^{-3}	d) 10^{-2}
66.	The minimum energy required for the reacting mole	cules to undergo reaction	is
	a) Potential energy	b) Kinetic energy	
	c) Thermal energy	d) Activation energy	

- 67. The decomposition of N_2O_5 occur as $2N_2O_5 \rightarrow 4NO_2 + O_2$, and follows 1st order kinetics, hance
 - a) The reaction is unimolecular

b) The reaction is bimolecular

c) $t_{1/2} \propto a^0$

- d) None of the above
- 68. The rate of a chemical reaction doubles for every 10°C rise of temperature. If the temperature is raised by 50°C, the rate of the reaction increases by about
 - a) 10 times
- b) 24 times
- c) 32 times
- d) 64 times
- 69. Which of the following statement is incorrect about the molecularity of a reaction?
 - a) Molecularity of a reaction is the number of molecules of the reactants presents in the balanced equation
 - b) Molecularity of a reaction is the number of molecules in the slowest step
 - c) Molecularity is always a whole number
 - d) There is no difference between order and molecularity of a reaction
- 70. For a reaction $A + B \rightarrow$ Products, the rate of the reaction was doubled when the concentration of A was doubled. When the concentration of A and B were doubled, the rate was again doubled, the order of the reaction with respect to *A* and *B* are:
 - a) 1, 1

b) 2, 0

c) 1,0

- d) 0, 1
- 71. An exothermic chemical reaction occurs in two steps as follows
 - (I) $A + B \rightarrow X$ (fast)
 - (II) $X \to AB$ (slow)

The progress of the reaction can be best represented by

- d) All are correct
- 72. According to the Arrhenius equation a straight line is to be obtained by plotting the logarithm of the rate constant of a chemical reaction (log k) against
 - a) T

- b) $\log T$

- 73. The rate constant is numerically the same for three reactions of first, second and third order respectively. Which one is true for rate of three reaction?
 - a) $r_1 = r_2 = r_3$
- b) $r_1 > r_2 > r_3$
- c) $r_1 < r_2 < r_3$
- d) All of these
- 74. Mathematical expression for $t_{1/4}$ i.e., when (1/4)th reaction is over following first order kinetics can be
- a) $t_{1/2} = \frac{2.303}{k} \log 4$ b) $t_{1/2} = \frac{2.303}{k} \log 2$ c) $t_{1/2} = \frac{2.303}{k} \log \frac{4}{3}$ d) $t_{1/2} = \frac{2.303}{k} \log \frac{3}{4}$

- 75. The rate of reaction:
 - $2NO + Cl_2 \rightarrow 2NOCl$ is given by the rate, equation rate = $k[NO]^2[Cl_2]$. The value of the rate constant can be increased by:
 - a) Increasing the temperature
 - b) Increasing the concentration of NO
 - c) Increasing the concentration of the Cl₂
 - d) Doing all of these
- 76. A reaction was observed for 15 days and the percentage of the reactant remaining after the days indicated was recorded in the following table.

Time (days)	% Reactant remaining
0	100
2	50
4	39

6	25
8	21
10	18
12	15
14	12.5
15	10

Which one of following best describes the order and the half-life of the reaction?

Half-life (days)

- a) First
- 2

- b) First

- c) Second
- 2

- d) Zero

77. In the reaction

$$BrO_3^-(aq) + 5Br^-(aq) + 6H^+ \rightarrow 3Br_2(l) + 3H_2O(l)$$

The rate of appearance of bromine (Br2) is related to rate of disappearance of bromide ions as following:

a)
$$\frac{d(Br_2)}{dt} = \frac{3}{5} \frac{d(Br^-)}{dt}$$

a)
$$\frac{d(Br_2)}{dt} = \frac{3}{5} \frac{d(Br^-)}{dt}$$
 b) $\frac{d(Br_2)}{dt} = -\frac{3}{5} \frac{d(Br^-)}{dt}$ c) $\frac{d(Br_2)}{dt} = -\frac{5}{3} \frac{d(Br^-)}{dt}$ d) $\frac{d(Br_2)}{dt} = \frac{5}{3} \frac{d(Br^-)}{dt}$

c)
$$\frac{d(Br_2)}{dt} = -\frac{5}{3} \frac{d(Br_2)}{dt}$$

$$d)\frac{d(Br_2)}{dt} = \frac{5}{3}\frac{d(Br^-)}{dt}$$

78. Which one of the following is a second order reaction

b) $NH_4NO_3 \rightarrow N_2 + 3H_2O$

a) $H_2 + Br_2 \rightarrow 2HBr$ c) $H_2 + Cl_2 \xrightarrow{Sunlight} 2HCl$

- d) CH₃COOCH₃ + NaOH → CH₃COONa + H₂O
- 79. The temperature coefficient of most of the reactions lies between
- b) 2 and 3
- c) 1 and 4
- d) 2 and 4

80. In respect of the equation $k = Ae^{-E_{\alpha}/RT}$ in chemical kinetics, which one of the statement is correct?

a) R is Rydberg constant

b) *K* is equilibrium constant

c) E_a is energy of activation

- d) A is adsorption factor
- 81. The rate of chemical reaction (except zero order):
 - a) Decreases from moment to moment
 - b) Remains constant throughout
 - c) Is independent of the order of reaction
 - d) None of the above
- 82. For a zero order reaction
 - a) $t_{1/2} \propto R_0$
- b) $t_{1/2} \propto 1/R_0$
- c) $t_{1/2} \propto R_0^2$
- d) $t_{1/2} \propto 1/R_0^2$

- 83. Effect of temperature on reaction rate is given by
 - a) Claisen-Clapeyron equation

b) Arrhenius equation

c) Gibbs Helmholtz equation

- d) Kirchoff's equation
- 84. The Arrhenius equation expressing the effect of temperature on the rate constant of reaction is:

a)
$$K = \frac{E_a}{RT}$$

- b) $K = Ae^{-E_a/RT}$
- c) $K = \log_e \frac{E_a}{RT}$
- 85. Find the two third life $(t_{1/2})$ of a first order reaction in which $k=5.48\times 10^{-14}$ per second
 - a) $201 \times 10^{13} s$
- b) 2.01×10^{13} s
- c) $201 \times 10^{20} s$
- d) $0.201 \times 10^{10} s$

86. $A + B \rightarrow Product$

If concentration of A is doubled, rate increases 4 times. If concentration of A and B are doubled, rate increases 8 times. The differential rate equation of the reaction will be

a)
$$\frac{dC}{dt} = kC_A \times C_B$$

- a) $\frac{dC}{dt} = kC_A \times C_B$ b) $\frac{dC}{dt} = kC_A^2 \times C_B^3$ c) $\frac{dC}{dt} = kC_A^2 \times C_B$ d) $\frac{dC}{dt} = kC_A^2 \times C_B$
- 87. For the reaction $A \to B$, the rate expression is $r = k[A]^n$. When the concentration of A is doubled, the rate of reaction is quadrupled. The value of *n* is
 - a) 1

- b) Zero
- c) 3

- 88. The rate constant for the first order reaction is $60 \, s^{-1}$. How much time will it take to reduce the concentration of the reaction to 1/16 M value?
 - a) 4.6×10^{-2} s
- b) $4.6 \times 10^4 s$
- c) 4.6×10^{2} s
- d) $4.6 \times 10^{-4} s$

89. In the reaction,

CLICK HERE (>>

 $2N_2O_5 \rightarrow 4NO_2 + O_2$ initial pressure is 500 atm and rate constant k is $3.38 \times 10^{-5} s^{-1}$ after 10 min the final pressure of $N_2 O_5$ is a) 490 atm b) 250 atm c) 480 atm 90. For a chemical reaction, can never to a fraction a) Order b) Half life c) Rate constant 91. The time taken for the completion of 3/4 of a first order reaction is

b) $(2.303/k) \log 4$ d) $(2.303/0.75) \log k$ (2.303/k) $\log 1/4$ a) $(2.303/k) \log 3/4$

92. $2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$ What is the ratio of the rate of decomposition of N_2O_5 to rate of formation of O_2 ? a) 1:2 b) 2:1 c) 1:4

93. A first order reaction is 75% complete after 32 min. when was 50% of the reaction completed? a) 16 min b) 8 min c) 4 min

94. For a reaction, $A + 2B \rightarrow C$, rate is given by $+\frac{d[C]}{dt} = k[A][B]$, hence, the order of the reaction is

95. The accompanying figure depicts the change in concentration of species X and Y for the reaction $X \to Y$, as a function of time. The point of intersection of the two curves represents:

a) $t_{1/2}$

b) $t_{3/4}$

c) $t_{2/3}$

d) Data is insufficient to predict

96. The rate constant of a reaction at temperature 200 K is 10 times less than the rate constant at 400 K. What is the activation energy (E_a) of the reaction?

a) 1842.4 R

b) 921.2 R

c) 460.6 R

d) 230.3 R

d) 420 atm

d) Molecularity

97. A zero order reaction is one:

a) In which reactants do not react

b) In which one of the reactants is in large excess

c) Whose rate does not change with time

d) Whose rate increases with time

98. In a first order reaction the a/(a-x) was found to be 8 after 10 minute. The rate constant is:

a) $(2.303 \times 3 \log 2)/10$

b) $(2.303 \times 2 \log 3)/10$ c) $10 \times 2.303 \times 2 \log 3$ d) $10 \times 2.303 \times 3 \log 2$

99. If the rate of reaction $A \rightarrow B$ doubles on increasing the concentration of A by 4 times, the order of the reaction is

a) 2

b) 1

c) $\frac{1}{2}$

d) 4

100. The rate of chemical reaction

a) Increase as the reaction proceeds

b) Decrease the reaction proceeds

c) May increase or decrease during reaction

d) Remains constant as the reaction proceeds

101. For zero order reaction, the integrated rate equation is

a) $kt = \frac{A}{A_0}$

b) $kt = [A] - [A]_0$

c) $[A] = -kt + [A]_0$

d) $[A] = kt - [A]_0$

102. The half-life period of a first order reaction is 69.3 s. what is the rate constant?

2)	$0.01s^{-1}$
aj	0.013

b)
$$0.1s^{-1}$$

c)
$$1s^{-1}$$

d)
$$10s^{-1}$$

 103 . A reaction has a rate constant of 0.5 mol $^{-1}$ dm 3 min. If initial concentration of the reactant is 0.2 mol dm $^{-3}$, half-life of the reaction

a) 1.4 min

b) 10 min

c) 15 min

d) 20 min

104. The bromination of acetone that occurs in acid solution is represented by this equation.

$$CH_3COCH_3(aq) + Br_2(aq) \rightarrow CH_3COCH_2Br(aq) + H^+(aq) + Br^-(aq)$$

These kinetic data were obtained for given reaction concentrations.

Initial concentrations, M

$[CH_3COCH_3]$	$[Br_2]$	$[H^+]$	Initial rate,
			disappearan
			ce
			of Br_2 , $M s^{-1}$
0.30	0.05	0.05	5.7×10^{-5}
0.30	0.10	0.05	5.7×10^{-5}
0.30	0.10	0.10	1.2×10^{-4}
0.40	0.05	0.20	3.1×10^{-4}

Based on these data, the rate equation is:

- a) rate = $k[CH_3COCH_3][Br_2]$
- b) rate = $k[CH_3COCH_3][Br_2][H^+]^2$
- c) rate = $k[CH_3COCH_3][Br_2][H^+]$
- d) rate = $k[CH_3COCH_3][H^+]$

105. The rate constant for a chemical reaction has units $L \, mol^{-1}s^{-1}$, order of the reaction will be

a) 0

d) 3

106. Activation energy of a chemical reaction can be determined by

- a) Evaluating rate constant at standard temperatures
- b) Evaluating velocities of reaction at two different temperatures
- c) Evaluating rate constants at two different temperatures
- d) Changing concentration of reactants
- 107. Which statement about molecularity of a reaction is wrong?
 - a) It is the number of molecules of the reactants taking part in a single step of reaction
 - b) It is calculated from the reaction mechanism
 - c) It may be either whole number or fractional
 - d) None of the above

108. Arrhenius equation may not be represented as

a)
$$\ln \frac{A}{k} = \frac{E_a}{RT}$$

b)
$$\frac{d \ln k}{dT} = \frac{E}{RT^2}$$

c)
$$\log A = \log k + \frac{E_a}{2.303 RT}$$

d)
$$\log \left[-\frac{E_a}{RT} \right] = \frac{k}{A}$$

109. The reaction $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$ is carried out in a $1dm^3$ vessel and $2dm^3$ vessel separately. The ratio of the reaction velocities will be

a) 1:8

b) 1:4

c) 4:1

110. The rate for the reaction, $RCl + NaOH(aq) \rightarrow ROH + NaCl$ is given by rate =k[RCl], the freezing point of the reaction is

- a) Unaffected by increasing the temperature of the reaction
- b) Decreased on increasing the temperature of the reaction
- c) Halved on reducing the concentration of RCl to half
- d) Doubled on doubling the concentration of NaOh
- 111. In the sequence of reaction,

 ${\rm A} \xrightarrow{\ k_1 \ } {\rm B} \xrightarrow{\ k_2 \ } {\rm C} \xrightarrow{\ k_3 \ } {\rm D} \ k_3 > k_2 > k_1 \ {\rm then \ the \ rate \ determining \ step \ of \ reaction \ is}$

CLICK HERE (>>

a) $A \rightarrow B$	b) $B \rightarrow C$	c) $C \rightarrow D$	d) $A \rightarrow D$
112. A first order reaction is 2	20% complete in 10 min. W	hat is the rate constant of	the reaction?
a) 0.223	b) 0.0223	c) 0.322	d) 0.0322
113. The activation energy of	exothermic reaction $A \rightarrow B$	380 kJ mol^{-1} . The heat of re	eaction is 200 kJmol^{-1} . The
activation energy for the	reaction $B \to A(\text{in kJ mol}^-$	1) will be	
a) 80	b) 120	c) 40	d) 280
114. An endothermic reaction	$A \rightarrow B$ has an activation e	nergy of 15 kcal/mol and th	ne energy of reaction is 5
kcal/mol. The activation	n energy for the reaction B	$\rightarrow A$ is	
a) 20 kcal/mol	b) 15 kcal/mol	c) 10 kcal/mol	d) Zero
115. K for a zero order reaction	on is $2 \times 10^{-2} \text{ mol L}^{-1} \text{sec}^{-1}$. If the concentration of the	reactant after 25 sec is 0.5 M,
the initial concentration	must have been:		
a) 0.5 <i>M</i>	b) 1.25 M	c) 12.5 M	d) 1.0 M
116. Rate constant for a react	ion is $10^{-3}s^{-1}$. The to leave	e 25% reaction is	
a) 693 s	b) 1386 s		d) 2029 s
117. By increase in temperate	are by 10 K, the rate of reac	tion becomes double. How	many times the rate of
reaction will be if the ter	nperature is increased fron	n 303K to 353 K?	
a) 4	b) 8	c) 16	d) 32
118. Temperature coefficient	of a reaction is 2. When ter	nperature is increased fron	n 30°C to 100°C, rate of the
reaction increases by			
a) 128 times	b) 100 times	c) 500 times	d) 250 times
119. The activation energy of	a reaction is 9 kcal/mol. T	he increase in the rate cons	tant when its temperature
is raised from 295 to 300			2
a) 10%	b) 50%	c) 100%	d) 28%
120. For a reaction $\frac{1}{A} \rightarrow 2B$.	rate of disappearance of 'A	is related to the rate of ap	pearance of B by the
	d[A] = 1 d[B]	d[A] = d[B]	d[A] = d[B]
a) $-\frac{dt}{dt} = \frac{2}{2}\frac{dt}{dt}$	b) $-\frac{dt}{dt} = \frac{1}{4}\frac{dt}{dt}$	c) $-\frac{dt}{dt} = \frac{dt}{dt}$	d) $-\frac{dt}{dt} = 4\frac{dt}{dt}$
121. For a first order reaction	on, $(A) \rightarrow \text{products}$, the con	ncentration of A changes f	rom 0.1 M to 0.025 M in 40
	ction when the concentration		
a) 3.47×10^{-4} M/min	b) 3.47×10^{-5} M/min	c) $1.73 \times 10^{-4} \text{ M/min}$	d) 1.73×10^{-5} M/min
122. In a 1st order reaction, re		그 그리구스 발생경에 살아갔다. 하나 아랍어	
a) 1/C increases linearly	with t	b) Log C decreases linear	ly with t
c) C decreases with 1/t		d) Log C decreases with	
123. The rate constant of a z	ero order reaction is 0.2 n	nol $dm^{-3} h^{-1}$. If the concer	tration of the reactant after
$30 \text{ min is } 0.05 \text{ mol dm}^{-3}$. Then its initial concentra	tion would be	
a) 0.01 mol dm^{-3}	b) 0.15 mol dm^{-3}	c) 0.25 mol dm ⁻³	d) 4.00 mol dm^{-3}
124. For a chemical reaction	$2X + Y \rightarrow Z$, the rate of app	earance of Z is 0.05 mol L	1. The rate of disappearance
of X will be			
a) $0.05 \text{ mol } L^{-1} h^{-1}$	b) $0.05 \text{ mol } L^{-1} \text{ min}^{-1}$	c) $0.1 \text{ mol } L^{-1} \text{ min}^{-1}$	d) $0.25 \text{ mol } L^{-1} \text{ min}^{-1}$
125. For a reaction, $x(g) \rightarrow y(g)$	(g) + z(g) the half-life peri	od is 10 min. in what perio	d of time would the
concentration of X be re	duce to 10% of original cor	ncentration?	
a) 20 min	b) 33 min	c) 15 min	d) 25 min
126. When is the activation e	nergy for the decomposition	n of N ₂ O ₅ as,	
$N_2O_5 \rightleftharpoons 2NO_2 + \frac{1}{2}O_2$		7 30 0	
	$tant = 3.45 \times 10^{-5} at 27$ °C	and rate constant = 6.9×1	10 ^{−3} at 67°C?
a) 112.5 kJ	b) 200 kJ	c) 149.5 kJ	d) 11.25 kJ
127. Rate equation for a secon		₫	ef (c) = 8
	b) $K = \frac{1}{t} \log \frac{a}{a(a-x)}$	c) $K = \frac{1}{t} \cdot \frac{x}{a(a-x)}$	d) $K = \frac{1}{t^2} \cdot \frac{a}{(a-x)}$
$\iota = (u - x)$	$\iota = \iota \iota (\iota \iota - \iota)$	u(u-x)	(u 1)

128.	Which	of the	following	statements	are correct?
------	-------	--------	-----------	------------	--------------

- 1. Order of a reaction can be known from experimental result and not from the stoichiometry of reaction
- 2. Overall molecularity of a reaction may be determined in a manner similar to overall order of reaction
- 3. Overall order of reaction,

$$A^m + B^n \to AB_x$$
 is $(m+n)$

- Molecularity of a reaction refers to
- (i) Molecularity of each of the elementary steps (slow steps) in a multistep reaction
- (ii) Molecularity of that particular step in a single step reaction

Select the correct answer by using the codes given below

- a) 1, 3 and 4
- b) 1, 2 and 3
- c) 2, 3 and 4
- d) 1, 2 and 4

129. For the order reaction with rate constant 'K' and initial concentration 'a', the half-life period given by

a)
$$\frac{1n2}{k}$$

b) $\frac{1}{ka}$

d) None of these

130. For the reaction, $2A + B \rightarrow C + D$, the order of reaction is

a) One with respect[B]

b) Two with respect to [A]

c) Three

- d) Cannot be predicted
- 131. Which expression is wrong for fist order reaction?

a)
$$k = \frac{2.303}{t} \log \left(\frac{A_0}{A_t} \right)$$

b)
$$k = \frac{t}{2.303} \log \left(\frac{A_0}{A_t}\right)$$

c)
$$-k = \frac{t}{2.303} \log \left(\frac{A_t}{A_0}\right)$$

132. For a first order reaction, the half-life period is

- a) Dependent on the square of the initial concentration.
- b) Dependent on first power of initial concentration.
- c) Dependent on the square root of initial concentration.
- d) Independent on initial concentration
- 133. Give relation between half reaction time $(t_{1/2})$ and initial concentration of reactant for (n-1) order reaction.

a)
$$t_{1/2} \propto [R]_0$$

b)
$$t_{1/2} \propto [R]_0^{2-n}$$

c)
$$t_{1/2} \propto [R]_0^{n+1}$$

d)
$$t_{1/2} \propto [R]_0^{n-2}$$

134. For a first order reaction $A \rightarrow \text{Product}$, the initial concentration of A is 0.1 M and after 40 minute it becomes 0.025 M. Calculate the rate of reaction at reactant concentration of 0.01M:

a)
$$3.47 \times 10^{-4} M \text{ min}^{-1}$$

b)
$$3.47 \times 10^{-5} M \text{ min}^{-1}$$

c)
$$1.735 \times 10^{-6} M \text{ min}^{-1}$$

d)
$$1.735 \times 10^{-4} M \text{ min}^{-1}$$

135. Rate of reaction

- a) Decreases with increase in temperature
- b) Increases with increase in temperature
- c) May increase or decrease with increase in temperature

b) $\frac{1}{ka}$

d) Does not depends on temperature

136. For the first order reaction with the rate constant k, which expression gives the rate half-life period? (Initial

a)
$$\frac{3}{2}ka^2$$

c) $\frac{1}{\nu}$

d) $\frac{0.693}{\nu}$

137. The rate constant (k') of one of the reaction is found to be double that of the rate constant (k'') of another reaction. Then the relationship between the corresponding activation energies of the two reaction $(E'_a \text{ and } E''_a)$ can be represented as

a)
$$E'_{-} > E''_{-}$$

b)
$$E'_{-} = 4E'_{-}$$

c)
$$E'_{1} = E'_{2}$$

d)
$$E'_{a} < E'_{a}'$$

a) $E_a' > E_a''$ b) $E_a' = 4E''$ c) $E_1' = E_a''$ d) $E_a' < E_a''$ 138. For a given reaction of first order, it takes 15 minute for the concentration to drop from 0.8 M litre⁻¹ to 0.4 *M* litre⁻¹. The time required for the concentration to drop from 0.1 *M* litre⁻¹ to 0.025 *M* litre⁻¹ will be:

CLICK HERE (>>

a) 60 minute

b) 15 minute

c) 7.5 minute

d) 30 minute

139. The rate constant for a second order reaction is $8 \times 10^{-5} M^{-1} min^{-1}$. How long will it take a 1*M* solution to be reduced to 0.5M?

a) 8.665×10^3 minute

b) 8×10^{-5} minute

c) 1.25×10^4 minute

d) 4×10^{-5} minute

140. The slope in Arrhenius plot, is equal to

d) None of the above

141. The rate constants k_1 and k_2 for two different reactions are $10^{16}e^{-2000/T}$ and $10^{15}e^{-1000/T}$, respectively. The temperature at which $k_1 = k_2$ is:

a) $\frac{2000}{2.303}$ K

c) $\frac{1000}{2.303}$ K

d) 1000 K

142. If the volume of the vessel in which the reaction $2NO + O_2 \rightarrow 2NO_2$ is occurring is diminished to $1/3^{rd}$ of its initial volume. The rate of the reaction will be increased by

a) 3 times

b) 9 times

c) 27 times

d) 36 times

143. The time for half-life period of a creation reaction $A \rightarrow$ products is 1 h. when the initial concentration of the reactant 'A', is 2.0 $mol L^{-1}$, how much time does it take for its concentration to come from 0.50 to $0.25 \ mol \ L^{-1}$, if it is a zero order reaction?

b) 0.5 h

c) 0.25 h

144. For a reaction $A + B \rightarrow C + D$, if the concentration of A is doubled without altering the concentration of B, the rate gets doubled. If the concentration of B is increased by nine times without altering the concentration of A, the rate gets tripled. The order of the reaction is

145. What fraction of a reactant showing first order remains after 40 minute if $t_{1/2}$ is 20 minute?

a) 1/4

b) 1/2

c) 1/8

146. At 500 k, the half-life period of a gaseous reaction at an initial pressure of 80 kPa is 350 s. when the pressure is 40 kPa, the half-life period is 175 s. The order of the reaction is

a) Zero

b) One

c) Two

d) Three

147. Which of the following statements are incorrect?

a) Rate of the reaction involving conversion of *ortho* hydrogen to para hydrogen $= -\frac{d[H_2]}{dt} = k[H_2]^{3/2}$

b) Rate of the reaction involving the thermal decomposition of acetaldehyde = $k[CH_3CHO]^{1/2}$

c) In the formation of phosgene from CO and Cl_2 , the rate of the reaction = $k[CO][Cl_2]^{1/2}$

d) In the decomposition of H_2O_2 , the rate of reaction = $k[H_2O_2]$

148. At 373 K, a gaseous reaction $A \rightarrow 2B + C$ is found to be of first order. Starting with pure A, the total pressure at the end of 10 min was 176 mm and after a long time when A was completely dissociated, it was 270 mm. The pressure of *A* at the end of 10 min was

a) 94 mm

b) 47 mm

c) 43 mm

d) 90 mm

149. For a reversible reaction, $A \rightleftharpoons B$, which one of the following statements is wrong from the given energy profile diagram?

Reaction coordinate

a) Activation energy of forward reaction is greater than backward reaction

b) The forward reaction is endothermic

c) The threshold energy is less than that of activation energy

	d) The energy of activation	on of forward reaction is eq	ual to the sum of heat of re	action and the energy of
	 d) The energy of activation of forward reaction is equal to the sum of heat of reaction and the energy of activation of backward reaction 			
150.	50. Which one of the following is wrongly matched?			
		$COOC_2H_5$ -second order re	eaction	
		CH ₃ -pseudo unimol		
	c) Decomposition of H_2O_2			
		$\frac{1}{l}Br_2$ to give HBr $$ -first ord		
151.	For the reaction,			
	$2N_2O_5(g) \to 4NO_2(g) + 6$	$O_2(g)$		
	If the concentration of NO	O_2 increase by $5.2 \times 10^{-3} M$	in 100 s then the rate of th	ne reactions
	a) $1.3 \times 10^{-5} Ms^{-1}$	b) $0.5 \times 10^{-4} Ms^{-1}$	c) $7.6 \times 10^{-4} Ms^{-1}$	d) $2 \times 10^{-3} Ms^{-1}$
152.	The rate of the reaction A	→ product, at the initial co	oncentration of 3.24×10^{-2}	M is nine times its rate at
		tion of $1.2 \times 10^{-3} M$. The or		
	a) $\frac{1}{2}$	b) $\frac{3}{4}$	3	d) $\frac{2}{3}$
	L	4	2	3
153.		ro order reaction $A \rightarrow \text{proc}$	luct, is 100 min. How long	will it take in 80%
	completion?	221.00	2 122	722 U.S. E.
	a) 80 min	b) 160 min	c) 100 min	d) 200 min
154.	Consider the reaction 2A			
		alone was doubled, the hal	100 miles	
		ite increased by two times.		
455	a) $L mol^{-1} s^{-1}$	b) No unit	c) $mol L^{-1}s^{-1}$	d) s^{-1}
		onstant of a first order cher		
	a) $k = \frac{1}{t} \cdot \frac{x}{a(a-x)}$		b) $k = \frac{2.303}{t} \log_{10} \frac{a}{(a-x)^2}$	7
				,
	c) $k = \frac{x}{t}$		d) $k = \frac{1}{2t} \left[\frac{1}{(a-x)^2} - \frac{1}{a^2} \right]$	
		portant for the understa	anding of the upper atm	osphere H ₂ O and O react
100.		U.S	(17-17)	ad E_a is 77 kJ mol ⁻¹ , then E_a
		nbination of two OH radical		
		b) 4 kJ mol ⁻¹	and the state of t	d) 7 kJ mol ⁻¹
157.	Activation energy of a rea			50 Section 1 (1) Control (1)
	a) Is independent of temp			
	b) Increases with tempera	ature		
	c) Gets doubled for every	10 degree rise in temperat	ture	
	d) Decreases with temper	rature		
158.	For a I order reaction A	$\longrightarrow B$ the reaction rate a	t reactant concentration ($0.01M$ is found to be $2.0 \times$
	$10^{-5} Ms^{-1}$. The half-life p	period of the reaction is:		
	a) 30s	b) 300s	c) 220s	d) 347s
159.	For a zero order reaction,	, the plot of concentration o	of reactant vs time is (inter	cept refers to concentration
	axis)			
	a) Liner with positive slop	pe and zero intercept		
	b) Linear with negative sl			
	- 1950년 전 전 12 Mar 10 Mar 10 Mar 12 Mar	ope and non-zero intercep		
		ope and non-zero intercept		
160.			a managan ang ang ang ang ang ang ang ang a	he concentration of reactant
		f this reaction with respect		
	a) -1	b) -2	c) 2	d) 1
161.		reaction at 290 K was four		
	a) 6.4×10^{-3}	b) 1.28×10^{-2}	c) 9.6×10^{-3}	d) 3.2×10^{-4}

162. The term	$\frac{-dc}{dt}$ in a	rate	equation	refers	to
---------------	-----------------------	------	----------	--------	----

- a) The decrease in concentration of the reactant with time
- b) The concentration of the reactant
- c) The change in concentration of the reactant
- d) The velocity constant of the reaction
- 163. In a first order reaction the concentration of reactant decreases from 800 mol/dm^6 to 50 mol/dm^6 in 2 \times 10⁴s. The rate constant of reaction in s^{-1} is

a)
$$2 \times 10^4$$

b)
$$3.45 \times 10^{-5}$$

c)
$$1.386 \times 10^{-4}$$

d)
$$2 \times 10^{-4}$$

164. Consider the chemical reaction,

$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$

The rate of this reaction can be expressed in terms of time derivative of concentration of $N_2(g)$, $H_2(g)$ and $NH_3(g)$. Identify the correct relationship amongst the rate expressions:

a) Rate =
$$-d[N_2]/dt = -\frac{1}{3}d[H_2]/dt = \frac{1}{2}d[NH_3]/dt$$

b) Rate =
$$-d[N_2]/dt = -3d[H_2]/dt = 2d[NH_3]/dt$$

c) Rate =
$$d[N_2]/dt = \frac{1}{3}d[H_2]/dt = \frac{1}{2}d[NH_3]/dt$$

d) Rate =
$$-d[N_2]/dt = -d[H_2]/dt = d[NH_3]/dt$$

- 165. Rate of reaction can be expressed by following rate expression, rate= $k[A]^2[B]$, if concentration of A is increased by 3 times and concentration of B is increased by 2 times, how many times rate of reaction increases?
 - a) 9 times
- b) 27 times
- c) 18 times
- d) 8 times

166. As the reaction progresses, the rate of reaction

a) Increases

b) Decreases

c) Remains constant

- d) First increases, then decreases
- 167. The data for the reaction, A+B→C

Ex	$[A]_0$	$[B]_0$	Initial rate
1	0.012	0.035	0.10
2	0.024	0.070	0.80
3	0.024	0.035	0.10
4	0.012	0.070	0.80

The rate law corresponds to the above data is

a)
$$rate = k[B]^3$$

b)
$$rate = k[B]^4$$

c)
$$rate = k[A][B]^3$$

d)
$$rate = k [A]^2 [B]^2$$

- 168. In a reaction, when the concentration of reactant is increased two times, the increase in rate of reaction was four times. Order of reaction is
- a) Zero
- b) 1

c) 2

d) 3

169. For the reaction

$$N_2 + 3H_2 \rightleftharpoons 2NH_3$$

The rate of change of concentration for hydrogen is $0.3 \times 10^{-4} Ms^{-1}$

The rates of change of concentration of ammonia is

a)
$$-0.2 \times 10^{-4}$$

b)
$$0.2 \times 10^{-4}$$

c)
$$0.1 \times 10^{-4}$$

d)
$$0.3 \times 10^{-4}$$

170. Which of the following statement is in accordance with collision theory?

Rate is directly proportional to collision frequency

Rate depend upon orientation of atoms

Temperature determines the rate

a) Only III

b) Only I and II

c) Only II and III

d) All of these

171. $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g) + 22 \text{ kcal.}$

The activation energy for the forward reaction is 50 kcal. What is the activation energy for the backward reaction?

a) -72 kcal

b) -28 kcal

c) +28 kcal

d) +72 kcal

172. According to collision theory:

- a) Collisions are sufficiently violent
- b) All collision are responsible for reaction
- c) All collisions are effective
- d) Only highly energetic molecules have enough energy to react

173. The rate constant of a first order reaction whose half-life is 480 s is

a)
$$1.44 \, \mathrm{s}^{-1}$$

b)
$$1.44 \times 10^{-3} \text{ s}^{-1}$$

c)
$$2.88 \times 10^{-3} \text{ s}^{-1}$$

d)
$$0.72 \times 10^{-3} \text{ s}^{-1}$$

174. $2A \rightarrow B + C$; It would be a zero order reaction when:

- a) The rate of reaction is proportional to square of conc. of A
- b) The rate of reaction remains same at any conc. of A
- c) The rate remains unchanged at any conc. of B and C
- d) The rate of reaction doubles if conc. of B is increased to double

175. For a reaction $A + 2B \rightarrow C$, rate is given by

$$r = K[A][B]^2$$

The order of reaction is:

b) 6

d) 7

176. Rate constant for a reaction is λ . Average life is represent by

a)
$$\frac{1}{\lambda}$$

177. The plot between concentration versus time for a zero order reaction is represented by

178. For the decomposition of N2O5(g), it is given that:

$$2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g);$$

Activation energy E_a

$$N_2O_5(g) \rightarrow 2NO_2(g) + (1/2)O_2(g);$$

Activation energy E'_a

then;

a)
$$E_a = E'_a$$

b)
$$E_a > E'_a$$

c)
$$E_a < E'_a$$

d)
$$E_a = 2E'_a$$

179. During the kinetic study of the reaction $2A + B \rightarrow C + D$ following results were obtained.

Run	[A] in M	[B] in M	Initial rate of
			formation of
			D in Ms^{-1}
I	0.1	0.1	6.0×10^{-3}
II	0.3	0.2	7.2×10^{-2}
III	0.3	0.4	2.88×10^{-1}
IV	0.4	0.1	2.40×10^{-2}

On the basis of above data which one is correct:

a)
$$r = k[A]^2[B]$$

b)
$$r = k[A][B]$$

c)
$$r = k[A^2][B]^2$$

d)
$$r = k[A][B]^2$$

180. If the reaction rate at a given temperature becomes slower then

- a) The free energy of activation is higher
- b) The free energy of activation is lower
- c) The entropy changes
- d) The initial concentration of the reactants remains constant

181. The number of molecules of the reactants taking par	t in a single step of the rea	ction tells about:
a) Molecularity of the reaction		
b) Mechanism of the reaction		
c) Order of reaction		
d) All of the above 182. For the reaction system,		
$2NO(g) + O_2(g) \rightarrow 2NO_2(g)$		
Volume is suddenly reduced to half its value by incre	easing the pressure on it. If	the reaction is of first order
with respect to O_2 and second order with respect to	마이 어떻게 보는 바람이 하나 얼마나 뭐 보다 하는데 나가 나가 나가 되었다.	
a) Diminish to one –fourth of its initial value	b) Diminish to one -eight	
c) Increase to eight time of its initial value	d) Increase to four time of	
183. The reaction,		
$CH_3COOC_2H_5 + NaOH \rightarrow CH_3COONa + C_2H_5OH $ is :		
a) Biomolecular reaction		
b) II order reaction		
c) Both (a) and (b)		
d) None of these		
184. Which is correct relation in between $\frac{dc}{dt}$, $\frac{dn}{dt}$ and $\frac{dP}{dt'}$		ent concentration, mole and
pressure terms for gaseous phase reactant $A(g) \rightarrow f$	product?	
$-\frac{dc}{dc} = -\frac{1}{2}\frac{dn}{dc}$	J. DTJ JD	d) All of the above
a) $\frac{dt}{dt} = \frac{V}{dt} = \frac{dr}{dt} = -\frac{dP}{dt}$	c) $\frac{dc}{dt} = \frac{RI}{V} \frac{dn}{dt} = -\frac{dP}{dt}$	
a) $ -\frac{dc}{dt} = -\frac{1}{V} \frac{dn}{dt} $ $ = -\frac{1}{RT} \frac{dP}{dt} $ b) $ \frac{dc}{dt} = \frac{dn}{dt} = -\frac{dP}{dt} $	at v at at	
185. The rate constant of a reaction is found to be 3×10		- f t t
a) Zero b) 1	c) 2	d) 1.5
186. A reactant (A) forms two products :	C) Z	u) 1.5
13 AV 175		
$A \stackrel{\kappa_2}{\to} B$, Activation energy E_{a_1}		
$A \stackrel{k_2}{\rightarrow} C$, Activation energy E_{a_2}		
If $E_{a_2} = 2 E_{a_1}$, than k_1 and k_2 are related as		

If $E_{a_2} = 2 E_{a_1}$, than k_1 and k_2 are related as a) $k_1 = 2k_2 e_{E_{a_2}}/RT$ b) $k_1 = k_2 e_{E_{a_1}}/RT$ c) $k_2 = k_1 e_{E_{a_2}}/RT$ d) $k_1 = Ak_2 e_{E_{a_1}}/RT$

187. For the reaction $2A + B \rightarrow A_2B$, the rate Law given is

a) k[2A][B] b) k[A]³[B] c) k[A][B]³ d) k[A]²[B]

188. For producing the effective collisions the colliding molecules must have:

a) A certain minimum amount of energy

b) Energy lesser than threshold energy

c) Improper orientation

d) Proper orientation and energy equal or greater than threshold energy

189. The chemical reaction $20_3 \rightarrow 30_2$ proceeds as follows

$$0_3 \rightleftharpoons 0_2 + 0 \text{ (fast)}$$

 $0 + 0_3 \rightarrow 20_2 \text{ (slow)}$

The rate law expression should be

a) $r = k[O_3]^2$ b) $r = k[O_3]^2 [O_2]^{-1}$ c) $r = k[O_3][O_2]$ d) Unpredictable

190. Two substances A and B are present such that A and A are present such that A are present such that A and A are present such that A are present such that A are present such that A and A are present such that A are present such that A and A are present such that A are pre

a) 15 minute

b) 10 minute

c) 5 minute

d) 12 minute

191. A reaction involving A, B and C as reactants is found		
concentration of A, B and C are doubled separately,		rease two, zero and four
times respectively. The overall order of the reaction		1923 W
a) 1 b) 2	c) 3	d) 4
192. The rate constant of <i>n</i> th order has units:		
a) $litre^{1-n}mol^{1-n}sec^{-1}$ b) $mol^{n-1}litre^{n-1}sec^{-1}$	and the second s	.5
193. The reaction; N_2O_5 in $2NO_2 + 1/2 O_2(g)$ is of first of		
6.2×10^{-4} s ⁻¹ . What is the value of rate of reaction	when $[N_2O_5] = 1.25$ mole I	-17
a) 5.15×10^{-5} mole L ⁻¹ s ⁻¹		
b) 6.35×10^{-3} mole L ⁻¹ s ⁻¹		
c) 7.75×10^{-4} mole L ⁻¹ s ⁻¹ d) 3.85×10^{-4} mole L ⁻¹ s ⁻¹		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		3 - 6:1- 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
194. $t_{1/4}$ can be taken as the time taken for the concentre		of its initial value. If the
rate constant for a first order reaction is $k thet_{1/4}$ ca		
a) 0.75 /k b) 0.69 /k	c) 0.29 /k	d) 0.10 /k
195. In a chemical reaction two reactants take part. The		
concentration of one of them and inversely proport	ional to the concentration o	f the other. The order of
reaction is		
a) 0 b) 1	c) 2	d) 4
196. Which of the following is not the example of pseudo		
a) $CH_3COOC_2H_5 + H_2O \xrightarrow{H^+} CH_3COOH + C_2H_5OH$	b) $C_{12}H_{22}O_{11} + H_2O \stackrel{H^+}{\to} C$	$_{6}H_{12}O_{6} + C_{6}H_{12}O_{6}$
$-5 ch_3 cooc_2 h_5 + h_2 o \rightarrow ch_3 cooh + c_2 h_5 o h$	(Glucose fructose
c) $CH_3COCl + H_2O \rightarrow CH_3COOH + HCl$	d) $CH_3COOC_2H_5 + H_2O^{O}$	$\stackrel{H^-}{\longrightarrow} CH_3COOH + C_2H_5OH$
197. The differential rate law for the reaction,	0 2 0 2	2 0
$4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(g)$		
a) $-\frac{d[NH_3]}{dt} = -\frac{d[O_2]}{dt} = -\frac{d[NO]}{dt} = -\frac{d[H_2O]}{dt}$	$d[NH_3] = d[O_2] = 1$	$d[NO] = 1 d[H_2O]$
$\frac{df}{dt} = -\frac{dt}{dt} = -\frac{dt}{dt} = -\frac{dt}{dt}$	$\frac{dt}{dt} = \frac{dt}{dt} = -\frac{1}{4}$	$\frac{dt}{dt} = -\frac{1}{6} \frac{dt}{dt}$
c) $\frac{1}{4} \frac{d[NH_3]}{dt} = \frac{1}{5} \frac{d[O_2]}{dt} = \frac{1}{4} \frac{d[NO]}{dt} = \frac{1}{6} \frac{d[H_2O]}{dt}$	d) $-\frac{1}{2}\frac{d[NH_3]}{d[NH_3]} = -\frac{1}{2}\frac{d[O_2]}{d[O_3]}$	$\frac{1}{2} = \frac{1}{2} \frac{d[NO]}{d[H_2O]} = \frac{1}{2} \frac{d[H_2O]}{d[H_2O]}$
198. 1 g of $_{79}$ Au ¹⁹⁸ $(t_{1/2} = 65 \text{ h})$ give stable mercury by	β- emission. What amount	of mercury will left after
260 h?	3.0.000	12.0.000
a) 0.9375 g b) 0.3758 g	c) 0.7586 g	d) 0.9000 g
199. The rate law for the chemical reaction		
$2NO_2$ CL $\rightarrow 2NO_2 + CL_2$ is rate =k[NO_2 Cl]. The rate d	1.77	CI
a) $2NO_2Cl \rightarrow 2NO_2 + 2Cl$ c) $NO_2Cl + Cl \rightarrow NO_2 + Cl_2$	b) $NO_2 + Cl_2 \rightarrow NO_2Cl +$ d) $NO_2Cl \rightarrow NO_2 + Cl$	C.
200. The rate law for the reaction	$a_1 NO_2 c_1 \rightarrow NO_2 + c_1$	
$RCI + NaOH \rightarrow ROH + NaCI$ is given by Rate = $k[RO]$	Il The rate of this reaction	
a) Is doubled by doubling the concentration of NaO		
b) Is halved by reducing the concentration of RCl by		
c) Is increased by increasing the temperature of the		
d) In unaffected by change in temperature		
201. The rate constant of a reaction increases by 5% who	en its temperature is raised	from 27°C to 28°C. The
activation energy of the reaction is		
a) 36.6 kJ/mol b) 16.6 kJ/mol	c) 46.6 kJ/mol	d) 26.6 kJ/mol
202 of a reaction cannot be determined experi	mentally.	
a) Order b) Rate	c) Rate of constant	d) Molecularity

- 203. A first order reaction is carried out with an initial concentration of 10 mole per litre and 80% of the reactant changes into the product. Now if the same reaction is carried out with an initial concentration of 5 mol per litre the percentage of the reactant changing to the product is:

b) 80

- d) Cannot be calculated
- 204. For a reaction of the type $A + B \rightarrow x$ products, it is observed that doubling the concentration of A causes the reaction rate (k_1) to be four times as great but doubling the amount of B does not affect the rate (k_2) . The rate equation is
 - a) $k = k_1 + k_2$
- b) $k = k_1 k_2$
- c) $k = \frac{k_1}{k_2}$
- d) $k^{1/2} = k_1 \times k_2$

- 205. Which increases on increase of temperature?
 - a) Energy of activation (E_a)

b) Collision frequency (Z)

c) Rate constant (k)

- d) Both (a) and (c)
- 206. In the first order reaction, the concentration of the reactants is reduced to 25% in one hour. The half-life period of the reaction is

- c) 1/2h
- d) 1/4h
- 207. In the given graph the activation energy, E_a for the reverse reaction will be

Reaction coordinate -

- a) 150 kJ
- b) 50 kJ
- c) 200 kJ
- 208. What is the order of a reaction which has a rate expression rate = $k[A]^{3/2}[B]^{-1}$?

- b) Zero

- d) None of these
- 209. For a fist order reaction, the concentration changes from 0.8 to 0.4 in 15 min. The time taken for the concentration to change from 0.1 M to 0.025 M is
 - a) 30 Min
- b) 15 Min
- c) 7.5 min
- d) 60 min

210. Give the hypothetical reaction mechanism

$$A \xrightarrow{I} B \xrightarrow{II} C \xrightarrow{III} D \xrightarrow{IV} E$$
 and the date as

Species	30 May 1977
formed	Rate of its Formation
	0.002 mol/h, per mole of
В	A
	0.030 mol/h, per mole of
С	В
	0.011 mol/h, per mole of
D	C
	0.420 mol/h, per mole of
E	D

The rate determining step is

- b) Step II
- c) Step III
- 211. For $A + B \rightarrow C + D$, $\Delta H = -20$ kJ mol⁻¹ the activation energy of the forward reaction is 85kJ mol⁻¹. The activation energy for backward reaction is ...kJ mol-1.

- a) 65 b) 105 c) 85 d) 40 212. For the reaction $N_2+3H_2 \rightarrow 2NH_3$, the rate $\frac{d[NH_3]}{dt}=2\times 10^{-4}M$ s⁻¹. Therefore, the rate $-\frac{d[N_2]}{dt}$ is given as:

left. The	e order of the rea	ction is		
a) 0		b) 1	c) 2	d) 3
214. The rate	of a reaction is e	expressed in different ways	as follows	
1d[C]	1d[D]	1 d[A] d[B]		
$+\frac{1}{2}\frac{dt}{dt}$	$ = -\frac{1}{5} \frac{1}{dt} = +$	$\frac{1}{3}\frac{d[A]}{dt} = -\frac{d[B]}{dt}$		
The read	ction is			
a) $4A +$	$B \rightarrow 2C + 3D$		b) $B + 5D \rightarrow 3A + 2C$	
0.53	$2B \rightarrow 2C + 3D$		d) $B + \frac{1}{2}D \rightarrow 4A + 2C$	
215 The rate	of elementary r	eaction $A \rightarrow R$ increases	4	oncentration of A is increased
		e reaction with respect to A		meentration of 11 is mercused
a) 1	i. The order of the	b) 2	c) 10	d) 100
	prential rate law	for the reaction 4NH ₃ (g) +		
a) $-\frac{\alpha_1}{\alpha_2}$	$\frac{11131}{11} = -\frac{\alpha[O_{2}]}{11} =$	$= -\frac{d[NO]}{dt} = -\frac{d[H_2O]}{dt}$	b) $\frac{a_1 a_1 a_2}{a_2} = \frac{a_1 a_2}{a_2} = -$	$\frac{1}{4}\frac{\alpha[NO]}{4} = -\frac{1}{4}\frac{\alpha[NO]}{4}$
1 d [N	H_a $1d[0a]$	$1 d[NO] 1 d[H_0O]$	at at 1 d[NH _o] 1 d[t	A = a = b = a = 0
c) $\frac{1}{4}\frac{\alpha_{11}}{\alpha_{12}}$	$\frac{1131}{t} = \frac{1}{5} \frac{\alpha_1 \alpha_{21}}{dt} = \frac{1}{5} \frac{\alpha_1 \alpha_1 \alpha_{21}}{dt} = \frac{1}{5} \alpha_1 $	$\frac{1}{4}\frac{\alpha[110]}{dt} = \frac{1}{6}\frac{\alpha[1120]}{dt}$	d) $-\frac{1}{4}\frac{a_1^2 a_1^2}{dt} = -\frac{1}{5}\frac{a_1^2 a_2^2}{dt}$	$\frac{D_2}{dt} = \frac{1}{4} \frac{d[NO]}{dt} = \frac{1}{6} \frac{d[H_2O]}{dt}$
				reaction becomes 1.837 times.
	er of reaction is	men concentration of 21 is in	idue 1.5 diffes, the rate of	reaction becomes 1.057 times.
a) 1	of reaction is	b) 1.5	c) 2	d) 2.5
	reaction Cl ± 21	$\stackrel{\text{def}}{=} J_1 + 2Cl^-$, the initial co		
a) 1 × 1		in was 0.20 mol L^{-1} . Then t b) 5×10^{-4}	c) 1×10^{-3}	d) 5×10^{-3}
		The second contract of	server in the page servery or	THE RESERVE OF THE PARTY OF THE
				4B are 180 kJ mol ⁻¹ and 200
		e presence of a catalyst lov		
			lange of the reaction $(A_2$ -	$+B_2 \rightarrow 2AB$) in the presence
	st will be (in kJ n			
a) 300		b) 120	c) 280	d) 20
	tatement is corre			
V-599		tivation energy are usually		
b) The r	ate law sometime	es enable to deduce the me	chanism of a reaction	
0.01-0.00-0.00-0.00	ate law for reacti entration	on is an algebraic expressi	on relating the forward re	action rate to product
d) Incre	ase in the total pr	ressure of a gas phase reac	tion increase the fraction	of collisions effective in
	ucing reactions	3		
		ent of a reaction is:		
	Th	fixed temperature		
		ant at two temperature		
		ant differing by 10° prefera	ably 25° and 35°C	
-	of the above	une unicinig by 10 prefere	abiy 25 una 55 d	
5		te equation refers to:		
	oncentration of a			
		ntration of the reactant wit	th time	
			in time	
	elocity constant	oi reaction		
	of the above	alconomic consequences	f t t :- 0 0 T M AG-	
			i a reactant is 0.05 M. Aite	er 45 min it is decreased by
		reaction time $\left(t_{1/2} ight)$	2	82
a) 87.42	min	b) 25.90 min	c) 78.72 min	d) 77.20 min

b) $10^4 M \,\mathrm{s}^{-1}$ c) $10^{-2} M \,\mathrm{s}^{-1}$ d) $10^{-4} \mathrm{s} \, M^{-1}$

213. The reaction $L \rightarrow M$ is started with 10.0 g of L. After 30 and 90 min, 5.0 g and 1.25 g of L respectively are

a) $10^{-4} M s^{-1}$

224. The order of a ga	aseous phase reaction for which	rate becomes half if volu	me of container having same
amount of reactar			Ü
a) 1	b) 1/2	c) 2	d) 1/3
225. For the reaction, l	$N_2O_5 \rightarrow 2NO_2 + \frac{1}{2}O_2$	VIII.	100 00 1 (100 00 1 000 000 000
Given, $-\frac{d[N_2O_5]}{dt} =$			
300000000000000000000000000000000000000			
$\frac{d[NO_2]}{dt} = K_2[N_2O]$			
and $\frac{d[O_2]}{dt} = K_3[N]$	[0.05]		
The relation in be	tween K_1, K_2 and K_3 is:		
a) $2K_1 = K_2 = 4K_1$	K_3 b) $K_1 = K_2 = K_3$	c) $2K_1 = 4K_2 = K_3$	d) None of these
	endent equation can be written a	as	
a) $\ln k = \ln A - e$	E _a /RT	b) In $k = \ln A + e^{E_a/RT}$	
c) $\ln k = \ln A - e$	RT/E_a	d) None of these	
227. A first order react	tion is 50% complete in 30 min a	t 27°C and in 10 min at 47°	C. The energy of activation of
the reaction is			
a) 52.8 kJ	b) 23.6 kJ	c) 29.5 kJ	d) 43.8 kJ
228. Increase in the co	ncentration of the reactants lead	s to the change in	
a) Activation ener	rgy	b) Heat of reaction	
c) Collision frequ	ency	d) Threshold energy	
229. When a graph is p	lotted between $\ln k$ and $1/T$ for a	a first order reaction, a stra	ight line is obtained. The slope
of the line is equa	l to		
	b) $-\frac{E_a}{2.202 \text{p}}$	2.303	E_a
a) $-\frac{1}{2.303}$	$\frac{1}{2.303R}$	$C) - \frac{1}{E_a R}$	d) $-\frac{E_a}{R}$
230. For the two gased	ous reactions, following data are	given	
$A \to B; k_1 = 10^{10}$	$e^{-20,000/T}$		
$C \rightarrow D; k_2 = 10^{12}$	$e^{-24,606/T}$		
	at which k_1 becomes equal to k_2	is	
a) 400 K	b) 1000 K	c) 800 K	d) 1500 K
231. Hydrogenation of	vegetable ghee at 25°C reduces	pressure of H2 from 2 atn	
	terms of molarity per second is:		
a) 1.09×10^{-6}	b) 1.09×10^{-5}	c) 1.09×10^{-7}	d) 1.09×10^{-8}
232. In the reaction A	$+ B \rightarrow \text{products, if } B \text{ is taken in } e$	excess, then it is an example	e of
a) Second order r	reaction	b) Zero order reaction	
c) Pseudounimol		d) First order reaction	
233. The rate of a cher	nical reaction depends upon:		
a) Time	b) Pressure	c) Concentration	d) All of these
234. The rate constant	for the reaction,		
$2N_2O_5 \rightarrow 4NO_2 +$			CN O (: 1/I)
	0_2 is 3.0×10^{-5} s ⁻¹ . If the rate	is $2.40 imes 10^{-5}$ then the con	icentration of N_2U_5 (in mol/L)
is	O_2 is 3.0×10^{-5} s ⁻¹ . If the rate	is 2.40×10^{-5} then the con	icentration of N_2O_5 (in mol/L)
	O_2 is 3.0×10^{-5} s ⁻¹ . If the rate b) 1.2	is 2.40×10^{-5} then the conc.	
a) 1.4	b) 1.2	c) 0.04	d) 0.8
a) 1.4 235. The following dat	b) 1.2 a are for the decomposition of ar	c) 0.04	d) 0.8
a) 1.4 235. The following dat Vol.of N ₂ in cc	b) 1.2 a are for the decomposition of ar Time (min)	c) 0.04	d) 0.8
a) 1.4 235. The following dat Vol.of N ₂ in cc 6.25	b) 1.2 a are for the decomposition of ar Time (min) 10	c) 0.04	d) 0.8
a) 1.4 235. The following dat Vol.of N ₂ in cc 6.25 9.00	b) 1.2 a are for the decomposition of ar Time (min) 10 15	c) 0.04	d) 0.8
a) 1.4 235. The following dat Vol.of N ₂ in cc 6.25 9.00 11.40	b) 1.2 a are for the decomposition of ar Time (min) 10 15 20	c) 0.04	d) 0.8
a) 1.4 235. The following dat Vol.of N ₂ in cc 6.25 9.00 11.40 13.65	b) 1.2 a are for the decomposition of ar Time (min) 10 15 20 25	c) 0.04	d) 0.8
a) 1.4 235. The following dat Vol.of N ₂ in cc 6.25 9.00 11.40	b) 1.2 a are for the decomposition of ar Time (min) 10 15 20 25 Infinity	c) 0.04	d) 0.8

a) Zero	b) One	c) Two	d) Three
236. For a reaction	$A \rightarrow \text{Product, rate law is } -\frac{d[a]}{d}$	$\frac{A]}{L} = K[A]_0$. The concentrat	ion of A left after time t when $t = \frac{1}{K}$
is:	u	L ************************************	R
a) $\frac{[A]_0}{a}$	h) [4] a × e	c) $\frac{[A]_0}{e^2}$	d) $\frac{1}{[A]_{\alpha}}$
e		Č	F10
	r reaction $A \to P$, the tempera	ature (T) dependent rate co	onstant (k) was found to follow the
equation. $\log k = -(200)$	$T \perp 60$		
	ential factor A and the activat	ion energy F respectively	are
		b) 6.0 s ⁻¹ and 16.6	
	and 16.6 kJ mol ⁻¹	d) $1.0 \times 10^6 \text{s}^{-1}$ an	
238. In Arrhenius ed	quation $K = Ae^{-E_a/RT}$, the qua		
a) Boltzmann f	actor b) Frequency fact	or c) Activation factor	or d) None of these
	owing reaction, the fastest on	e is:	
a) Burning of c			
b) Rusting of ir		-1.1	
	of monoclinic sulphur to rhon n of silver chloride by mixing :		bloride solutions
			and to be second order overall.
1770 P	$0_2 \ 2.30_2 \rightarrow 20_3$	no were experimentally for	and to be second order overall.
N73	$+ NO_2$ 4. $H_2 + I_2 \rightarrow 2HI$		
	are most likely to be element	ary reaction that occur in o	one step?
a) 3 only	b) 1 and 3	c) 1 and 4	d) 3 and 4
	ction; $aG + bH \rightarrow Products$		
			ncreases by eight times. However,
the reaction,	ation of G is doubled keeping	the concentration of H fixe	d, the rate is doubled. The overall of
a) 0	b) 1	c) 2	d) 3
	ant for a zero order reaction is	0.00	
$c_0 = c_0 - c_0$	$b) k = \frac{c_0 - c_t}{t}$	c) $k = \frac{c_0}{c_0}$	d) $k = \frac{c_0}{2t}$
	The second secon	°t	21
	e times for 99.9% of the reacti		
a) 2	b) 4	c) 8	d) 10
	energy for a simple chemical i reverse reaction	reaction $A \to B$ is \mathcal{L}_a in for	ward direction. The activation
a) Is negative of		b) Is always less t	han E
	than or more than E_a	d) Is always doub	1 1 2 1 2 1 2 1 2 1 7 1 2 1 2 1 2 1 2 1
			order reaction be halved if the rate
constant is 1.1	$55 \times 10^{-3} s^{-1}$?		
a) 600	b) 100	c) 60	d) 10
	$nA + 2B \rightarrow C$, the rate of reac		
a) $+\frac{d[A]}{dA} = + -$	$\frac{1}{2}\frac{d[B]}{dt} = +\frac{d[C]}{dt}$	b) $\frac{d[A]}{dt} = -\frac{1}{2} \frac{d[B]}{dt}$	$\frac{dC}{dt} = -\frac{dC}{dt}$
uc	L ut ut		
c) $-\frac{dt}{dt} = -$	$\frac{1}{2}\frac{d[B]}{dt} = +\frac{d[C]}{dt}$	$d) + \frac{d[A]}{dt} = +\frac{1}{2}\frac{d}{dt}$	$\frac{dt}{dt} = +\frac{dt}{dt}$
247. Which of the fo	llowing theory is not related	to chemical kinetics?	
a) Collision the	700 C T		
b) Activated co			
253	action rate theory		
d) VSPER theor	cy .		

	nge $A \to B$ it is found that The order of the reaction	t the rate of reaction doubles v n is	when the concentration is
a) One	b) Two	c) Half	d) None of these
	s first order with respect at is the order of reaction	to A, second order with respen?	ct to B and zero order with
a) First	b) Second	c) Third	d) Zero
(25)	1.50	for a given reaction, then the r	eaction is
a) Zero order	b) First order	c) Second order	d) Third order
251. The given reaction			
$2FeCl_3 + SnCl_2 \rightarrow 2F$	eCl ₂ + SnCl ₄ is an examp	le of	
a) Third order reacti	on	b) Second order reacti	on
c) First order reactio	n	d) None of these	
^{252.} The order for the rea	ction. $H_2 + Cl_2 \stackrel{hv}{\rightarrow} 2HCl$ or	ver water is:	
a) 0	b) 1	c) 2	d) 3
253. The inversion of cane	377 4 77 570		-, -
a) I order	b) II order	c) III order	d) Zero order
		$= 2 \times 10^{-4} \text{ mol L}^{-1} \text{s}^{-1}$, the va	
		$^{1}s^{-1}$ c) $4 \times 10^{-4} \text{ mol L}^{-1}s^{-1}$	
255. For the reaction $\binom{N_2O_5}{(g)}$	$\rightarrow \frac{{}^{2}\text{NO}_2 + \frac{1}{2}\text{O}_2}{(g)}$, the rate of	disappearance of N ₂ O ₅ is 6.25	$\times10^{-3} molL^{-1}s^{-1}.$ The rate of
이 아이지 않아 아이지 않아 있다면 아이아에게 되었다면 하는데 없다는데 아이아 그리다 아이와 되었다.	l O ₂ will be respectively.		
	$^{-1}$ s $^{-1}$ and 6.25 × 10 $^{-3}$ mo		
	1 s $^{-1}$ and 3.125 × 10 $^{-3}$ m		
	1 s $^{-1}$ and 3.125 × 10 $^{-3}$ m		
: TARREST (1. 1915) (1. 1915) (1. 1915) (1. 1915) (1. 1915) (1. 1915) (1. 1915) (1. 1915) (1. 1915) (1. 1915)	$^{-1}$ s ⁻¹ and 6.25 × 10 ⁻³ mc		
		nes, then the value of rate cons	stant of first order will:
a) Increase by <i>n</i> time			
b) Decrease by factor	of n		
c) Not change			
d) None of these	(A) !-		
257. Unit of frequency fac	tor (A) is	D mal/Ly a	
a) mol/L	C	b) mol/L× s	
c) Depends upon ord		d) It does not have any	unit
258. The ionic reactions a	5	ise:	
a) It does not involve		ons is greater than that betwe	on noutral malaculas
c) Collision frequency	anggi Hawa Pada Piggad a tantanan kemada 1. ta n a babaha	ons is greater than that betwe	en neutral molecules
d) The reactions are	A STATE OF THE STA		
		t gets disappeared in 1.386h. T	The rate constant of the
reaction is	ction, 75% of the reactain	r gets disappeared in 1.300ii. i	the rate constant of the
	b) $2.8 \times 10^{-4} s^{-1}$	c) $17.2 \times 10^{-3} s^{-1}$	d) $1.8 \times 10^{-3} s^{-1}$
260. Number of mole of a			u) 1.0 × 10 3
a) Activity	b) Molar concentra		d) None of these
		rature increases by 10°C. If ten	
100°C, then rate of re	237	attire increases by 10 c. ii ter	inperature is increased by
a) 64 times	b) 256 times	c) 512 times	d) 1024 times
262. For a hypothetical re		c) old times	a, roa i imico
$A + 2B \rightarrow 3C + D$			
d[C]/dt is equal to			
r 1/			

a) $\frac{3d[A]}{dt}$	b) $-\frac{3}{2}\frac{d[B]}{dt}$	c) $-\frac{d[B]}{dt}$	$d - \frac{d[A]}{dt}$
263. The half-life of two	samples is 0.1 and 0.4 s. Their	ui	ut
a) 0	b) 2	c) 1	d) 4
264. Consider following	two reaction,		
$A \to product - \frac{d[}{d}$	STATE OF THE PARTY		
$B \rightarrow product - \frac{d[}{d}$	$\frac{B_1}{L} = k_2[B]^0$		
k_1 and k_2 are expr	essed in term of molarity (mol	L^{-1}) and time (s^{-1}) as	
	b) Ms^{-1} , Ms^{-1}	c) s^{-1} , $M^{-1}s^{-1}$	d) Ms^{-1} , Ls^{-1}
265. The reaction, NO +	$-(1/2)O_2 \rightarrow NO_2$ exhibits:	Š	
a) Small negative t	emperature coefficient		
b) Decrease in valu	ue of K with temperature		
c) Decrease in valu	ue of rate with temperature		
d) All of the above			
266. Consider the react	ion,		
$Cl_2(aq) + H_2S(aq)$	$A \rightarrow S(s) + 2H^{+}(aq) + 2Cl^{-}(aq)$	q) the rate equation for this	reaction is , rate =
$k[Cl_2][H_2S]$			
	chanisms is/are consistent with	Paratrian and an experience in the control of the c	
	$) \rightarrow H^+Cl^- + Cl^+ + HS^-(slow)$)	
	$H^+Cl^- + S(fast)$		
-	HS ⁻ (fast equilibrium)		
	$2Cl^- + H^+S(slow)$		
a) (B) only		c) Neither (A) nor (B)	
	Products; the concentration of		litre ⁻¹ to 0.4 mol litre ⁻¹ in 10
	f reaction during this interval is		1
a) 0.05 <i>M</i> min ⁻¹		c) 0.5 <i>M</i> min ⁻¹	
	ird life of a first order reaction		
			d) 4.02×10^{26} s
	ion the concentration of reacta	nt decreases from 800 mol	/dm ³ to 50 mol/dm ³ in 2 ×
	nstant of reaction in S ⁻¹ is	-) 1 200 10-4	D 2 × 10-4
a) 2×10^4		c) 1.386×10^{-4}	
	of a first order reaction is 6.9 ×	10 °s 1. How much time v	will it take to reduce the initial
concentration to it a) 100s	b) 200s	c) 300s	d) 400s
	ate expression is, rate = $K[A][H]$		
a) 1	b) 2	c) 5/3	d) Zero
	ammonia by Haber process, if		
rate of disappeara	and the same of the first from the same of the same	oo moles of aminoma is obt	amed in one nour, then the
a) 30 mol/min	b) 6 mol/min	c) 0.5 mol/min	d) 60 mol/min
	second order reaction is	c) olo mol/mm	a) oo moi/ min
:3	initial concentration of reactan	ts	
	initial concentration of reactan		
	rtional to initial concentration		
d) None of the abo		01100000000	
	nitial concentration 1.386 mol	litre-1 showing first orde	er change takes 40 minute to
	hows zero order change taking	2.70	
The state of the s	st order and zero order kinetics		,
K_0	, co. aci ana zero order Ametica	CILMI MAIL	

a) 0.5 mol^{-1} litre	b) 1.0 mol/litre	c) 1.5 mol/litre	d) 2.0 mol^{-1} litrte
275. The reason for almost of	doubling the rate of reaction	on increasing the tempera	ture of the reaction system
by 10°C is			
a) The value of thresho	ld energy increases		
b) Collision frequency i	ncreases		
5 (5)	nolecules having energy equa	al to threshold energy incre	eases
d) Activation energy de			
276. Plot of $\log(a - x)$ versu		indicates that the reaction	is of:
a) Second order	b) First order	c) Zero order	d) Third order
277. The $t_{1/2}$ of the first ord	The second property of the second	AND A THE PROPERTY AND ARROWS	Call 🗸 Total Control of the Control
a) Dependent of initial		b) Directly proportional	to initial concentration
[마일 [1]	nal to initial concentration	d) Independent of initial	
			the temperature is increased
	rate of the reaction will bec		
a) 64 times	b) 128 times	c) 256 times	d) 512 times
279. The time required for 1			
T)			,, 2k
a) <i>ak</i>	b) $\frac{a}{2k}$	c) $\frac{a}{k}$	d) $\frac{2k}{a}$
280. The reaction, $2N_2O_5 \rightleftharpoons$	$2N_2O_4 + O_2$ is		
 a) Bimolecular and sec 	ond order	b) Unimolecular and firs	t order
c) Bimolecular and firs	t order	d) Bimolecular and zero	order
281. The thermal decompos	ition of a compound is of firs	st order. If a sample of the	compound decompose 50%
in 120 min. What time	will it take to undergo 90%	decomposition?	
a) Nearly 400 min	b) Nearly 45 min	c) Nearly 480 min	d) Nearly 240 min
282. Which one of the follow	ving statements for the order	r of a reaction is incorrect?	
 a) Order of reaction is a 	always a whole number		
b) Order can be determ	ined only experimentally		
c) Order is not influence	ed by stoichiometric coeffici	ient of the reactants	
d) Order of reaction is s	sum of power to the concent	ration terms of reactants to	express the rate of reaction
283. The rate of chemical re	action depends on the nature	e of chemical reactions, bed	cause:
 a) The threshold energ 	y level differs from one react	tion to another	
b) Some of the reactant	s are solid at room temperat	ture	
c) Some of the reactant	s are coloured		
d) All of the above			
284. If the rate of reaction b	etween A and B is given by, $\mathfrak p$	$rate = K[A][B]^n, then the r$	reaction is:
a) First order in A			
b) nth order in B			
c) Overall order is $(1 +$	(n)		
d) All are correct			
			s doubled, and rate increases
T4.		the reactants $(A \text{ and } B)$ a	re doubled, rate law for the
reaction can be written			
a) Rate = $k[A][B]$		c) Rate = $k[A][B]^2$	
		d in coal depots does not bi	ırn automatically because of:
 a) High threshold energy 			
b) Kinetic stability of co			
	ivation needed for burning		
d) All of the above	1	C - 10=7 1 C - 1 C - 1	
			rate of disappearance of H+
$18 6.0 \times 10^{3} \text{ mol/L} \times \text{s},$	how long will it take for H ⁺	to disappear from the drop	

- a) 8.0×10^{-8} s
- b) 2.0×10^{-8} s
- c) 6.0×10^{-6} s
- d) 2.0×10^{-2} s
- 288. The inversion of cane sugar into glucose and fructose according to the equation
 - $C_{12}H_{22}O_{11} + H_2O \rightarrow C_6H_{12}O_6 + C_6H_{12}O_6$ is an example of a) First order reaction
 - b) Third order reaction

c) Second order reaction

d) Zero order reaction

289. In the reversible reaction

$$2NO_2 \xrightarrow{k_1} N_2O_4$$

The rate of disappearance of NO₂ is equal to

a) $\frac{2\kappa_1}{k_2}[NO_2]^2$

b) $2k_1[NO_2]^2 - 2k_2[N_2O_4]$

c) $2k_2[NO_2]^2 - k_2[N_2O_4]$

- d) $(2k_1 k_2)[NO_2]$
- 290. For the reaction, $N_2 + 3H_2 \rightleftharpoons 2NH_3$ the rate of change of concentration for hydrogen is -0.3×10^{-4} Ms⁻¹. The rate of change of concentration of ammonia is
 - a) -0.2×10^{-4}
- b) 0.2×10^{-4}
- c) 0.1×10^{-4}
- d) 0.3×10^{-4}
- 291. In the reaction; $A + 2B \rightarrow 3C + D$ which of the following expressions does not describe changes in the concentration of various species as a function of time?
 - a) $\frac{d[C]}{dt} = \frac{-3d[A]}{dt}$
- b) $\frac{3d[D]}{dt} = \frac{d[C]}{dt}$
- c) $\frac{3d[B]}{dt} = \frac{-2d[C]}{dt}$ d) $\frac{2d[B]}{dt} = \frac{d[A]}{dt}$
- 292. The order of reaction, with respect to one of the reacting component Y, is zero. In implies that
 - a) The reaction is going on at a constant rate.
 - b) The rate of reaction does not very with temperature.
 - c) The reaction rate is independent of the concentration of Y.
 - d) The rate of formation of the activated complex is zero.
- 293. The rate of disappearance of SO_2 in the reaction; $2SO_2 + O_2 \rightarrow 2SO_3$ is 1.28×10^{-3} g/sec. Then the rate of formation of SO₃ is:
 - a) 0.64×10^{-3} g/sec
- b) 0.80×10^{-3} g/sec
- c) 1.28×10^{-1} g/sec
- d) 1.60×10^{-3} g/sec
- 294. For the first order reaction half-life is 14 s, the time required for the initial concentration to reduce to 1/8 of its value is
 - a) $(14)^3 s$
- b) 28 s
- c) 42 s
- d) $(14)^2 s$
- 295. Given that K is the rate constant for some order of any reaction at temp. T then the value of $\lim_{K \to \infty} \log K = 1$ (where *A* is the Arrhenius constsnt):
 - a) A/2.303

- c) 2.303 A
- d) $\log A$
- 296. The rate constant of a first order reaction is 3×10^{-6} per second and initial concentration is 0.10 M. Then the initial rate of reaction is
 - a) $3 \times 10^{-6} ms^{-1}$
- b) $3 \times 10^{-8} ms^{-1}$
- c) $3 \times 10^{-7} ms^{-1}$
- d) $3 \times 10^{-9} ms^{-1}$
- 297. With respect to the figure given below which of the following statements is correct?

- a) E_a for the forward reaction is C B
- b) E_a for the forward reaction is B A
- c) $E_{a_{\text{(forward)}}} < E_{a_{\text{(backward)}}}$
- d) E_a (for reverse reaction) = C A
- 298. For a first order reaction, $A \rightarrow \text{products}$, the rate of reaction at [A] = 0.2 M is $1.0 \times 10^{-2} \text{ mol L}^{-1} \text{min}^{-1}$. The half-life period for the reaction is
 - a) 476 s
- b) 496 s
- c) 832 s
- d) 242 s

299. From the following data, the activation energy for the reaction (cal/mol):	
$H_2 + I_2 \rightarrow 2HI$	
$T, K = 1T, K^{-1} = \log_{10} K$	
769 1.3×10^{-3} 2.9	
667 1.5×10^{-3} 1.1	104
a) 4×10^4 b) 2×10^4 c) 8×10^4 d) 3×10^4 elementary reaction is given as $3R + R$ a products. If concentration of R is	
300. An elementary reaction is given as $2P + Q \rightarrow$ products. If concentration of Q is concentration of P is doubled then rate of reaction is:	kept constant and
	nains same
301. The hydrolysis of ethyl acetate was carried out separately with 0.05 M HCl and 0.05	
constants were found to be k_1 and k_2 respectively then	, 11 11 2004. The Tute
a) $k_1 < k_2$ b) $k_1 > k_2$ c) $k_1 = k_2$ d) $k_2 = k_2$	$= 2k_1$
302. Which one of the following statement for order of reaction is not correct?	
a) Order can be determined experimentally	
b) Order of reaction is equal to sum of the power of concentration terms in differential	rate law
c) It is not affected with stoichiometric coefficients of the reactants	
d) Order cannot be fractional	
303. For a single step, reaction, $A + 2B \rightarrow Products$, the molecularity is	
a) 0 b) 1 c) 2 d) 3	
304. Which of the following statement is correct for a reaction $X + 2Y \rightarrow \text{Products}$?	
a) The rate of disappearance of $Y = t$ twice the rate of disappearance of $Y = t$	
b) The rate of disappearance of $X = 1/2$ rate of appearance of products c) The rate of appearance of products = $1/2$ the rate of disappearance of Y	
d) The rate of appearance of products = $1/2$ the rate of disappearance of Y	
305. For the reaction $A \rightarrow B$, the rate law is; rate = $K[A]$. Which of the following statements	s is incorrect?
a) The reaction follows first order kinetics	, is meet rect.
b) The $t_{1/2}$ of reaction depends upon initial concentration of reactant	
c) K is constant for the reaction at a constant temperature	
d) The rate law provides a simple way of predicting the concentration of reactants and	products at any
times after the start of the reaction	
306. For a first order reaction $k = 100 \text{ s}^{-1}$. The time for completion of 50% reaction is	
그는 그는 그리티 사는 그런 그는	milli-second
307. Pieces of wood burn faster than a log of wood of the same mass because	
a) Surface area of log of wood is larger and needs more time to burn	
b) Pieces of wood have large surface area	
c) All pieces of wood catch fire at the same time	
d) Block of wood has higher density than pieces of the same wood 308. Which statement is not correct?	
a) For endothermic reactions, heat of reaction is lesser than energy of activation	
b) For exothermic reactions, heat of reaction is more than energy of activation	
c) For exothermic reactions energy of activation is less in forward reaction than in back	kward reaction
d) For endothermic reactions energy of activation is more in forward reaction than in b	
309. Which statement is true?	
a) Endothermic reactions have higher activation energies than exothermic reactions	
b) The specific rate constant for a reaction is independent of the concentration of the re	eacting species
c) There is a single rate determining step in any reaction mechanism	
d) None of the above	
310. If k_1 = rate contant at temperature T_1 and k_2 =rate constant at temperature T_2 for a fire	st order reaction,
then which of the following relations is correct?	
$(E_a:$ activation energy)	

a)
$$\log \frac{k_1}{k_2} = \frac{2.303 E_a}{R} \left(\frac{T_2 - T_1}{T_1 T_2} \right)$$

b)
$$\log \frac{k_2}{k_1} = \frac{E_a}{2.303R} \left(\frac{T_2 - T_1}{T_1 T_2} \right)$$

c)
$$\log \frac{k_2}{k_1} = \frac{E_a}{2.303R} \left(\frac{T_1 T_2}{T_2 + T_1} \right)$$

b)
$$\log \frac{k_2}{k_1} = \frac{E_a}{2.303R} \left(\frac{T_2 - T_1}{T_1 T_2} \right)$$

d) $\log \frac{k_1}{k_2} = \frac{E_a}{2.303R} \left(\frac{T_1 T_2}{T_2 - T_1} \right)$

- 311. What is the half-life of Na-24 if 2×10^{-4} g sample of it disintegrate at the rate of 7.0×10^{12} atoms per s?
 - a) 4.97×10^5 s
- b) 4.97×10^4 s
- c) 4.97×10^6 s
- d) 4.97×10^2 s
- 312. The concentration of a reactant X decreases from 01 M to 0.005 m in 40 min. If the reaction follows first order kinetics, the rate of the reaction when the concentration of X is 0.01 M will be
 - a) $1.73 \times 10^{-4} Mmin^{-1}$

b) $3.47 \times 10^{-4} Mmin^{-1}$

c) $3.47 \times 10^{-5} M \ min^{-1}$

- d) $7.5 \times 10^{-4} M \ min^{-1}$
- 313. For zero order reaction the integrated rate equation is

a)
$$kt = \frac{[A]}{[A]_0}$$

b) $kt = [A] - [A]_0$ c) $[A] = -kt + [A]_0$ d) $[A] = kt - [A]_0$

314. The rate equation for the reaction $2A + B \rightarrow C$ is found to be

Rate=k[A][B]

The correct statement in relation to this reaction that the

- a) Unit of k must be s^{-1}
- b) $t_{1/2}$ is constant
- c) Rate of formation of C is twice the rate of disappearance of A
- d) Value of k is independent of the initial concentration of A and B
- 315. The unit of rate constant of second order reaction
 - a) $time^{-1}$
- b) $conc^{-1}time^{-1}$
- c) conc time⁻¹
- d) $conc^{-2}time^{-1}$
- 316. The rate constant for the first order reaction is $6 \, s^{-1}$. How much time will it take to reduce the concentration of the reactant to $\frac{1}{16}$ th value?
 - a) 4.6×10^{-2} s
- b) 4.6×10^4 s
- c) 4.6×10^2 s
- d) 4.6×10^{-4} s
- 317. Rate constant of a chemical reaction can be kept constant by:
 - a) Stirring the compounds
 - b) Keeping the temperature constant
 - c) Both (a) and (b)
 - d) None of the above
- 318. The rate of a chemical reaction doubled for every 10°C rise in temperature. If the temperature is increased by 60°C the rate of reaction increase by
 - a) 20 times
- b) 32 times
- c) 64 times
- d) 128 times
- 319. If 'a' is the initial concentration of the reactant, the half-life period of the reaction of nth order is proportional to
 - a) a^{n-1}
- b) a^n

- c) a^{1-n}
- d) a^{n+1}

- 320. Rate of reaction depends upon
 - a) temperature
- b) catalyst
- c) concentration
- d) All of these
- 321. For a reaction, the rate of reaction was found to increase about 1.8 times when the temperature was increased by 10°C. The increase in rate is due to:
 - a) Increase in number of active molecules
 - b) Increase in activation energy of reactants
 - c) Decrease in activation energy of reactants
 - d) Increase in the number of collisions between reacting molecules
- 322. A hypothetical reaction $A_2 + B_2 \rightarrow 2AB$ follows the mechanism as given below,

$$A_2 \rightleftharpoons A + A (fast)$$

$$A + B_2 \longrightarrow AB + B$$
 (slow)

$$A + B \rightarrow AB$$
 (fast)

a) 2	b)	ion is 1	c) $1\frac{1}{2}$	d) 0	
	reaction proceeds	following formul	2		
$k = PZe^{-1}$					
	ne following proces	ss will increase th		D	
a) Loweringc) Lowering			b) Lowering of	t of all the above factors	
324. In the resp		$k = Ae^{-E_a/RT} $ in c		ch one of the following stateme	ents is
correct?	:1:1		b) Ale adacumt	- Francis	
	ilibrium constant ergy of activation		b) A is adsorptid) R is Rydberg		
	575	→ 2NO E followir	ng mechanism has bee		
	100	→ ZNO ₂ r, lollowii	ig mechanism nas bee	ii provided,	
	$\stackrel{\text{low}}{\longrightarrow} \text{NO}_2\text{F} + \text{F}$				
$NO_2 + F \frac{F\epsilon}{r}$	→ NO ₂ F				
	expression of the a				
a) $r = K[N]$	2 2.	$r = K[NO_2][F_2]$	c) $r = K[NO_2]$	d) $r = K[F_2]$	
26. For the rea					
	[80]	맛이 집 가족에게 맛있었다면요? 하는 아이들은 그는 그 모든 것이다.	등 이 1일까지 않는 사람들은 아이를 열려가 되었다면 있다면 하는 것이 없는 것이 없었다면 하는데 없었다.	ction at any time is given by, ne	et rate =
			$(NH_3)_3H_2O]^{2+} \cdot [NH_3]$		
	ct statement is/ar				
950	stant for forward				
	stant for backwar				
	ium constant for tl	ne reaction = 6.6	× 10 ⁻¹⁰		
d) All of th		TO SECOND PROPERTY SECOND SECOND 1			
	ion between gaseo	us compounds,			
$2A + B \rightarrow$			1	6.1 1 . 1	. 1
			container is made - o	f the initial, then what will be t	the rate
	as compared to th				
1.50	s b)		c) 1/8 times	d) 1/16 times	
			se half-life, is 480 s is		
a) 2.88 × 3	78 1976 1976	$2.72 \times 10^{-3} s^{-1}$		1	
		mann na 1970 an 1980 a		th others per unit time under	
500 Sec.				ng N molecules per unit volum	ie is
a) <i>X/N</i>		NX	c) 2 <i>NX</i> e half-life period for re	d) NX/2	
		0.60 s	c) 3.3 s		ont
a) 0.30 s				d) Data is insufficion zero order reaction respective	
	t _{1/2} are initial con the following is corr		tant and nan-me of a	zero order reaction respective	ıy,
	2.79		1		
a) $t_{1/2} \propto \frac{1}{c}$	b)	$t_{1/2} \propto a$	c) $t_{1/2} \propto \frac{1}{a^2}$	d) $t_{1/2} \propto a^2$	
32. The tempe	rature dependence	of rate constant	(k) of a chemical react	tion is written in terms of Arrh	enius
equation,	$E = Ae^{-E*RT}$. Active	ation energy (E^*)	of the reaction can be	calculated by plotting	
	$\frac{1}{T}$ b)	1	-) I T	1	
a) log k vs	\overline{T}	$\frac{\log \kappa \ vs}{\log T}$	c) k vs I	d) $k vs \frac{1}{\log T}$	
		n is given by $k =$	$2.1 \times 10^{10} \exp(-2700$) RT).	
It means tl			12.202121		
	4 (m :11.1	ed line with slope	_ 2700		
a) $\log k vs$	1/T will be a curve	cu fille with Stope	-		

- b) $\log k \ vs \ 1/T$ will be a straight line with intercept on $\log k \ axis = \log 2.1 \times 10^{10}$ c) The number of effective collisions are 2.1×10^{10} cm⁻³ s⁻¹
- d) Half-life of the reaction increases with increase of temperature
- 334. The unit of the rate of a second order reaction
 - a) $time^{-1}$
- b) mol L⁻¹time⁻¹
- c) L mol⁻¹time⁻¹
- d) L^2 mol⁻² time⁻¹
- 335. Rate of a reaction can be expressed of by following rate expression

Rate= $k[A]^2[B]$, if concentration of A is reduced by half by what times concentration of B is to be increased to have same rate of reaction?

- a) 4 times
- b) 2 times
- c) 1/4 times
- d) 8 times
- 336. Select the intermediate in the following reaction mechanism:

$$O_3(g) \rightleftharpoons O_2(g) + O(g)$$

$$O(g) + O_3(g) \rightarrow 2O_2(g)$$

- a) $0_3(g)$
- b) O(g)
- c) $O_2(g)$
- d) None of these
- 337. For a certain reaction of order 'n' the time for half change $t_{1/2}$ is given by; $t_{1/2} = \frac{2-\sqrt{2}}{\kappa} \times c_0^{1/2}$, where K is rate constant c_0 is initial concentration. The value of n is:

b) 2

- 338. For a reaction between A and B, the initial rate of reaction is measured for various initial concentrations A and B. the data provided are

	[A]	[B]	Initial reaction rate
1	0.20 M	0.30 M	5×10^{-5}
2	0.20 M	0.10 M	5×10^{-5}
3	0.40 M	0.05 M	1×10^{-5}

The overall order of the reaction is

- a) One
- c) Two and half
- d) Three

- 339. Which order of reaction obeys the relation $t_{1/2} = 1/Ka$?
- b) Second
- c) Third
- d) Zero
- 340. How much faster would a reaction proceed at 25°C than at 0°C if the activation energy is 65 kJ?
- b) 16 times
- c) 11 times
- d) 6 times
- 341. The activation energy of a reaction at a given temperature is found to be 2.303RT J mol⁻¹. The ratio of rate constant to the Arrhenius factor is
 - a) 0.01
- b) 0.1

c) 0.02

- 342. Consider an endothermic reaction $X \to Y$ with the activation energies E_b and E_f for the backward and forward reactions respectively. In general
 - a) There is no definite relation between E_b and E_f
- b) $E_b = E_f$

c) $E_b > E_f$

- d) $E_b < E_f$
- 343. For the reaction $A \rightarrow nB$, at the point of intersection of two curves show, the [B] is can be given by:

- d) $\left[\frac{n-1}{n+1}\right]A_0$
- 344. The elementary step of the reaction, $2Na + Cl_2 = 2NaCl$ is found to follow III order kinetics, its molecularity is:
 - a) 1

b) 2

c) 3

d) 4

	sm has been proposed for a	reaction,	
$2A + B \longrightarrow D + E$			
$A + B \longrightarrow C + D$			
$A + C \longrightarrow E$			
100 St. 100 St	ssion for the reaction is:		
$a) r = K[A]^2[B]$	b) $r = K[A][B]$	c) $r = K[A]^2$	d) r = K[A][C]
346. Two first order rea	ction have half-lives in the r	atio 8: 1. Calculate the ratio o	of time intervals $t_1:t_2$. The time
t_1 and t_2 are the tin	ne period for $(1/4)$ th and $($	3/4)th completion	
a) 1: 0.602	b) 2:301	c) 0.256: 0.603	d) 0.2 : 0.301
347. Order of a reaction	can be		
a) Fractional	b) Zero	c) Integer	d) All of these
348. The half-life period	for a zero order reaction is	equal to	
a) $\frac{2k}{[A]_0}$	b) $\frac{[A]_0}{2k}$	0.693	d) $\frac{0.693}{k[A]_0}$
$\overline{[A]_0}$	$\frac{1}{2k}$	$\frac{k}{k}$	$\frac{\mathrm{d}}{k[A]_0}$
349. In a reaction $A + B$	\rightarrow C, the rate expression is	$R = k[A][B]^2$. If the concent	ration of both the reaction is
doubled at constan	t volume then the rate of th	e reaction will be	
a) Eight time	b) Double	c) Quadruple	d) Triple
350. For a gaseous react	ion, the units of rate of rate	of reaction are	
a) L atm s^{-1}	b) atm s^{-1}	c) atm $mol^{-1} s^{-1}$	d) $mol s^{-1}$
351. The rate constant i	s given by the equation K	= $Ae^{-E_a/RT}$ which factor she	ould register a decrease for the
reaction to proceed			
a) T	b) Z	c) A	d) E_a
352. The activation ener	gy for most of the reactions	s is approximately 50 kJ mol	
coefficient for such	1. 그렇게 하면 살아 보다면 하는 사람들이 되었다면 하는데 하는데 되었다면 하는데 되었다.	••	
a) > 2	b) >3	c) <1	d) >4
		693 s. The rate constant of t	
a) 0.1 s ⁻¹	b) $0.01 s^{-1}$		d) $0.0001 \mathrm{s}^{-1}$
V			mperature and partial pressure
			f conversion of H ₂ under same
condition is:		3	•
	b) 1.76×10^{-4} kg h	r^{-1} c) 2×10^{-3} kg hr ⁻¹	d) $3 \times 10^{-3} \text{kg hr}^{-1}$
		1.5	on of the reactant is 0.5 <i>M</i> , then
half-life is:			*
	ln 2	log ₁₀ 2	0.693
a) $\frac{\ln 2}{K}$	b) $\frac{\ln 2}{\kappa \sqrt{0.5}}$	c) $\frac{\log_{10} 2}{\kappa}$	d) $\frac{0.693}{0.5 K}$
	ollows a second order kinet	ics. Doubling the concentration	on of A will increase the rate of
formation of B by a			
a) ¼	b) 4	c) ½	d) 2
	mperature, rate of reaction	(5) (KG)	~, <u>-</u>
a) increases	inperature, rate or reaction	b) decreases	
c) Remains same		d) May increase or de	crease
	ring statement is not correc		crease
		on remains constant through	aut
V.#38			en one of the reactant is taken
in large excess.	100 To 10		
c) The value of first order rate constant expends on the units of the concentration term used.			
d) In a first order reaction the plot of log (a-x) vs time gives a straight line.			
-	20	3.0×10^{-6} mole of H ⁺ . If the would it take for H ⁺ in drop	rate constant of disappearance to disappear?
a) $6 \times 10^{-8} sec$	b) $6 \times 10^{-7} \text{sec}$	c) $6 \times 10^{-9} \text{sec}$	d) $6 \times 10^{-10} \text{sec}$
a commensation contracts—"founds" — 2000(\$1000)	samonement fraktivet stands moderned 64600000000	er vertice de la constitution de	Mark Transcription ASSAULT CARRIED TO

- 360. For the reaction, $2A + B \rightarrow$ products, the active mass of B is kept constant, and that of A is doubled. The rate of reaction will be then
 - a) Decrease 4 times
- b) Decrease 2 times
- c) Increase 4 times
- d) Increase 2 times
- 361. Which of the following expression is correct for second order reaction. (C_0 refers to initial concentration of reactant)?
 - a) $t_{1/2} \propto C_0$
- b) $t_{1/2} \propto C_0^0$
- c) $t_{1/2} \propto C_0^{-1}$
- d) $t_{1/2} \propto C_0^{-2}$
- 362. A first order reaction is 10% complete in 20 min. The time taken for 19% completion is
- b) 40 Min
- c) 50 min
- 363. A graph plotted between $\log k$ versus $\frac{1}{\pi}$ for calculating activation energy is shown by

- 364. In the following reaction $A \to B + C$, rate constant is 0.001 Ms⁻¹. Half-life and completion time of the given reaction are
 - a) 500 s, 1000 s
- b) 500 s. 750 s
- c) 250 s, 500 s
- d) 300 s, 600 s
- 365. A reaction was found to order with respect to the concentration of carbon monoxide. If the concentration of carbon monoxide is doubled, with everything else kept the same, the rate of reaction will
 - a) Remain unchanged

b) Triple

c) Increases by factor of four

- d) Double
- 366. The following data were obtained the first order decomposition of $2 A(g) \rightarrow B(g) + C(S)$ at a constant volume and at a particular temperature

S N	Time	Total pressure in Pascal
1	At the end of 10 min	300
2	After completion	200

The rate constant in min is

- a) 0.0693
- b) 69.3
- c) 6.93
- d) 6.93×10^{-4}
- 367. According to Arrhenius equation, the rate constant (k) is related to temperature (T) as

a)
$$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left[\frac{1}{T_1} - \frac{1}{T_2} \right]$$

b)
$$\ln \frac{k_2}{k_1} = -\frac{E_a}{R} \left[\frac{1}{T_1} - \frac{1}{T_2} \right]$$

c)
$$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left[\frac{1}{T_1} + \frac{1}{T_2} \right]$$

- d) $\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left[\frac{1}{T_1} + \frac{1}{T_2} \right]$
- 368. Inversion of cane-sugar in dilute acid is a
 - a) Bimolecular reaction

b) Pseudo-unimolecular reaction

c) Unimolecular reaction

d) Trimolecular reaction

369. Consider the reaction

$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$

The equality relationship between $\frac{d[NH_3]}{dt}$ and $-\frac{d[H_2]}{dt}$ is:

a)
$$+\frac{d[NH_3]}{dt} = -\frac{3}{2}\frac{d[H_2]}{dt}$$

b) $\frac{d[NH_3]}{dt} = -\frac{d[H_2]}{dt}$

b)
$$\frac{d[NH_3]}{dt} = -\frac{d[H_2]}{dt}$$

c)
$$\frac{d[\text{NH}_3]}{dt} = -\frac{1}{3} \frac{d[\text{H}_2]}{dt}$$

d) +
$$\frac{d[NH_3]}{dt}$$
 = $-\frac{2}{3}\frac{d[H_2]}{dt}$

concentration of [A] to h	bB when $[A] = 2.2 \text{ mM}$, that the rate changes to 0.6		oe 2.4 mMs ⁻¹ . On reducing
a) 1.5	b) 2.0	c) 2.5	d) 3.0
371. The units of the rate con			u) 5.15
a) $mol^{-1}L^{-1}s^{-1}$	b) $mol^{-1}Ls^{-1}$	c) $mol^{-1}Ls$	d) $mol L^{-1}s^{-1}$
372. A follows first order rea			of the second se
	of A when concentration of		
a) $3.47 \times 10^{-4} M \min^{-1}$			
b) $3.47 \times 10^{-5} M \min_{-1}^{-1}$			
c) $1.73 \times 10^{-4} M \min_{-1}^{-1}$			
d) $1.73 \times 10^{-5} M \min^{-1}$			
373. In the reaction $2A + B$ - reaction will	\rightarrow A_2B , if the concentration	of A is doubled and of B is	halved, then the rate of the
a) Increase by two times	3	b) Decrease by two time	S
c) Increase by four time	S	d) Remain the same	
374. Energy of activation of a	n exothermic reaction is		
a) Negative	b) Positive	c) Zero	d) Can't be predict
375. For a reaction, the rate of	constant is $2.34s^{-1}$. The half	f-life period for the reaction	n is
a) 0.30 s	b) 0.60 s	c) 3.3 s	d) Data is insufficient
376. The rate of a reaction go	et doubles when the tempe	rature changes from 7°C t	o 17°C. By what factor will it
change for the temperat	ure change from 17°C to 27	°C?	
a) 1.81	b) 1.71	c) 1.91	d) 1.76
377. Arrhenius equation is			
7.07	b) $\Delta G = \Delta H - T. \Delta S$		d) None of these
378. Which rate expression s	uggests an over all order of	0.5 for the reaction involv	ing substances X, Y, Z ?
a) Rate = $K[X][Y][Z]$			
b) Rate = $K[X]^{0.5}[Y]^{0.5}$	Z1 ^{0.5}		
	1000 c		
c) Rate = $K[X]^{1.5}[Y]^{-1}[X]^{-1}$	$Z]^0$		
c) Rate = $K[X]^{1.5}[Y]^{-1}[X]^{-1}[X]$ d) Rate = $K[X][Y]^{0}/[Z]^{2}$	Z] ⁰		
c) Rate = $K[X]^{1.5}[Y]^{-1}[X]^{-1}$	Z] ⁰	quation as	
c) Rate = $K[X]^{1.5}[Y]^{-1}[X]^{-1}[X]$ d) Rate = $K[X][Y]^{0}/[Z]^{2}$	Z] ⁰	quation as	
c) Rate = $K[X]^{1.5}[Y]^{-1}[X]$ d) Rate = $K[X][Y]^{0}/[Z]^{2}$ 379. Rate of a reaction can be $k = Ae^{-E/RT}$ In this equation, E represents	Z] ⁰ e expressed by Arrhenius ec		
c) Rate = $K[X]^{1.5}[Y]^{-1}[X]$ d) Rate = $K[X][Y]^{0}/[Z]^{2}$ 379. Rate of a reaction can be $K = Ae^{-E/RT}$ In this equation, E represa) The energy above wh	Z] ⁰ e expressed by Arrhenius economics esents ich all the colliding molecul	es will react	
c) Rate = $K[X]^{1.5}[Y]^{-1}[X]$ d) Rate = $K[X][Y]^0/[Z]^2$ 379. Rate of a reaction can be $k = Ae^{-E/RT}$ In this equation, E represa) The energy above when b) The energy below when	Z] ⁰ e expressed by Arrhenius ects ich all the colliding molecul ich colliding molecules will	es will react not react	
c) Rate = $K[X]^{1.5}[Y]^{-1}[X]$ d) Rate = $K[X][Y]^{0}/[Z]^{2}$ 379. Rate of a reaction can be $K = Ae^{-E/RT}$ In this equation, E represa) The energy above who b) The energy below who c) The total energy of the	Z] ⁰ e expressed by Arrhenius ectors ich all the colliding molecul ich colliding molecules will e reacting molecules at a te	es will react not react mperature, <i>T</i>	
c) Rate = $K[X]^{1.5}[Y]^{-1}[X]$ d) Rate = $K[X][Y]^0/[Z]^2$ 379. Rate of a reaction can be $k = Ae^{-E/RT}$ In this equation, E represa) The energy above who b) The energy below who c) The total energy of the d) The fraction of molecular transfer of the second control of the control of	Z] ⁰ e expressed by Arrhenius ects ich all the colliding molecul ich colliding molecules will e reacting molecules at a te ules with energy greater the	es will react not react mperature, <i>T</i> an the activation energy of	
c) Rate = $K[X]^{1.5}[Y]^{-1}[X]^{-1}[X]$ d) Rate = $K[X][Y]^{0}/[Z]^{2}$ 379. Rate of a reaction can be $k = Ae^{-E/RT}$ In this equation, E represa) The energy above who b) The energy below who c) The total energy of the d) The fraction of molection of the minimum energy results.	Z] ⁰ e expressed by Arrhenius ects ich all the colliding molecul ich colliding molecules will e reacting molecules at a te ules with energy greater the	es will react not react mperature, <i>T</i> an the activation energy of ce part in a reaction is calle	d
c) Rate = $K[X]^{1.5}[Y]^{-1}[X]$ d) Rate = $K[X][Y]^0/[Z]^2$ 379. Rate of a reaction can be $k = Ae^{-E/RT}$ In this equation, E represa) The energy above who b) The energy below who c) The total energy of the d) The fraction of molection of the minimum energy real and the second content of the second c	Z] ⁰ e expressed by Arrhenius ects ich all the colliding molecul ich colliding molecules will e reacting molecules at a te ules with energy greater the quired for a molecule to tak b) Nuclear energy	es will react not react mperature, T an the activation energy of ce part in a reaction is calle c) Potential energy	d d) Kinetic energy
c) Rate = $K[X]^{1.5}[Y]^{-1}[X]^{-1}[$	Z] ⁰ e expressed by Arrhenius ects ich all the colliding molecul ich colliding molecules will e reacting molecules at a te ules with energy greater the quired for a molecule to tak b) Nuclear energy comes 2 times for every 1	es will react not react mperature, <i>T</i> an the activation energy of se part in a reaction is calle c) Potential energy 0°C rise in temperature. H	d d) Kinetic energy
c) Rate = K[X] ^{1.5} [Y] ⁻¹ [Add) Rate = K[X][Y] ⁰ /[Z] ² 379. Rate of a reaction can be $k = Ae^{-E/RT}$ In this equation, E represal) The energy above when because the control of the co	Z] ⁰ e expressed by Arrhenius ects ich all the colliding molecules ich colliding molecules will e reacting molecules at a te ules with energy greater the quired for a molecule to tak b) Nuclear energy comes 2 times for every 1 ture is increased from 30°C	es will react not react mperature, T an the activation energy of se part in a reaction is calle c) Potential energy 0°C rise in temperature. He to 80°C?	d d) Kinetic energy low the rate of reaction will
c) Rate = K[X] ^{1.5} [Y] ⁻¹ [Ad) Rate = K[X][Y] ⁰ /[Z] ² 379. Rate of a reaction can be $k = Ae^{-E/RT}$ In this equation, E represa) The energy above who b) The energy below who c) The total energy of the d) The fraction of molection and the fraction of molection and the fraction of molection and the fraction beginned and the f	Z] ⁰ e expressed by Arrhenius ects esents ich all the colliding molecul ich colliding molecules will e reacting molecules at a te ules with energy greater the quired for a molecule to tak b) Nuclear energy comes 2 times for every 1 cure is increased from 30°C b) 32	es will react not react mperature, <i>T</i> an the activation energy of se part in a reaction is calle c) Potential energy 0°C rise in temperature. H	d d) Kinetic energy
c) Rate = K[X] ^{1.5} [Y] ⁻¹ [Ad) Rate = K[X][Y] ⁰ /[Z] ² 379. Rate of a reaction can be $k = Ae^{-E/RT}$ In this equation, E represal) The energy above whole the control of the control o	z] ⁰ e expressed by Arrhenius ects ich all the colliding molecul ich colliding molecules will e reacting molecules at a te ules with energy greater the quired for a molecule to tak b) Nuclear energy comes 2 times for every 1 ture is increased from 30°C b) 32 ion:	es will react not react mperature, T an the activation energy of ce part in a reaction is calle c) Potential energy 0°C rise in temperature. Fe to 80°C? c) 64	d d) Kinetic energy low the rate of reaction will d) 128
 c) Rate = K[X]^{1.5}[Y]⁻¹[X] d) Rate = K[X][Y]⁰/[Z]² 379. Rate of a reaction can be k = Ae^{-E/RT} In this equation, E represa) The energy above who b) The energy below who c) The total energy of the d) The fraction of molection and the fraction of molection and the fraction becomes an another than the fraction becomes and the fraction	z] ⁰ e expressed by Arrhenius ects ich all the colliding molecules ich colliding molecules will e reacting molecules at a te ules with energy greater the quired for a molecule to tak b) Nuclear energy comes 2 times for every 1 cure is increased from 30°C b) 32 ion: (g), the increase in pressur	es will react not react mperature, T an the activation energy of ce part in a reaction is calle c) Potential energy 0°C rise in temperature. Fe to 80°C? c) 64	d d) Kinetic energy low the rate of reaction will
 c) Rate = K[X]^{1.5}[Y]⁻¹[X] d) Rate = K[X][Y]⁰/[Z]² 379. Rate of a reaction can be k = Ae^{-E/RT} In this equation, E represa) The energy above who b) The energy below who c) The total energy of the d) The fraction of molection and the fraction of molection and the fraction beginned as a few short temperata and the fraction beginned and the fraction beginned as a few short temperata and the few shorts are the few shorts are the few shorts and	z] ⁰ e expressed by Arrhenius ects esents ich all the colliding molecul ich colliding molecules will e reacting molecules at a te ules with energy greater the quired for a molecule to tak b) Nuclear energy comes 2 times for every 1 cure is increased from 30°C b) 32 ion: (g), the increase in pressur	es will react not react mperature, T an the activation energy of the part in a reaction is calle c) Potential energy 0°C rise in temperature. He to 80°C? c) 64 re from 100 mm to 120 mm	d d) Kinetic energy low the rate of reaction will d) 128 m is noticed in 5 minute. The
 c) Rate = K[X]^{1.5}[Y]⁻¹[X] d) Rate = K[X][Y]⁰/[Z]² 379. Rate of a reaction can be k = Ae^{-E/RT} In this equation, E represa) The energy above who b) The energy below who c) The total energy of the d) The fraction of molection and the fraction of molection and the fraction becomes an another than the fraction becomes and the fraction	e expressed by Arrhenius education all the colliding molecules will e reacting molecules at a temporary greater that the colliding molecule to take the colliding molecules at a temporary greater that the col	es will react not react mperature, T an the activation energy of the part in a reaction is calle c) Potential energy 0°C rise in temperature. He to 80°C? c) 64 re from 100 mm to 120 mm c) 16	d d) Kinetic energy low the rate of reaction will d) 128
 c) Rate = K[X]^{1.5}[Y]⁻¹[X] d) Rate = K[X][Y]⁰/[Z]² 379. Rate of a reaction can be k = Ae^{-E/RT} In this equation, E represa) The energy above who b) The energy below who c) The total energy of the d) The fraction of molection and the fraction of molection and the fraction being th	e expressed by Arrhenius ectsents ich all the colliding molecul ich colliding molecules will e reacting molecules at a te ules with energy greater that quired for a molecule to take b) Nuclear energy comes 2 times for every 1 ture is increased from 30°C b) 32 ion: (g), the increase in pressur (g), the increase in pressur (g), the second order reaction is	es will react not react mperature, T an the activation energy of se part in a reaction is calle c) Potential energy 0°C rise in temperature. H to 80°C? c) 64 re from 100 mm to 120 mm c) 16	d d) Kinetic energy low the rate of reaction will d) 128 n is noticed in 5 minute. The d) 2
 c) Rate = K[X]^{1.5}[Y]⁻¹[X] d) Rate = K[X][Y]⁰/[Z]² 379. Rate of a reaction can be k = Ae^{-E/RT} In this equation, E represa) The energy above who b) The energy below who c) The total energy of the d) The fraction of molection and the fraction of molection and the fraction being th	e expressed by Arrhenius education all the colliding molecules will e reacting molecules at a temporary greater that the colliding molecule to take the colliding molecules at a temporary greater that the col	es will react not react mperature, T an the activation energy of the part in a reaction is calle c) Potential energy 0°C rise in temperature. He to 80°C? c) 64 re from 100 mm to 120 mm c) 16	d d) Kinetic energy low the rate of reaction will d) 128 m is noticed in 5 minute. The
 c) Rate = K[X]^{1.5}[Y]⁻¹[X] d) Rate = K[X][Y]⁰/[Z]² 379. Rate of a reaction can be k = Ae^{-E/RT} In this equation, E represa) The energy above who b) The energy below who c) The total energy of the d) The fraction of molection and the fraction of molection and the fraction being th	e expressed by Arrhenius ectsents ich all the colliding molecul ich colliding molecules will e reacting molecules at a te ules with energy greater that quired for a molecule to take b) Nuclear energy comes 2 times for every 1 ture is increased from 30°C b) 32 ion: (g), the increase in pressur (g), the increase in pressur (g), the second order reaction is	es will react not react mperature, T an the activation energy of se part in a reaction is calle c) Potential energy 0°C rise in temperature. H to 80°C? c) 64 re from 100 mm to 120 mm c) 16	d d) Kinetic energy low the rate of reaction will d) 128 n is noticed in 5 minute. The d) 2

$2\text{FeCl}_3 + \text{SnCl}_2 \rightarrow \text{SnCl}$			
	$_4$ + 2FeCl ₂ is an example o	f:	
a) First order reaction			
b) Third order reaction			
 c) Second order reaction 	n		
d) None of these			
		ng the concentration of A in the reaction rate. What is t	-
reaction?	13.070		D.d.
a) 4	b) 3/2	c) 3	d) 1
			t K_2 of another reaction. The
		ergies of the two reactions	at same temperature (E_1 and
E_2) can be represented		-) F F	D.N. Gal
a) $E_1 > E_2$	b) $E_1 < E_2$	c) $E_1 = E_2$	d) None of these
387. For the reaction, $H_2 + I$			4 1000
a) $-\frac{d[H_2]}{dt} = -\frac{d[I_2]}{dt} =$	$\frac{1}{2}\frac{a[HI]}{a}$	b) $-\frac{d[H_2]}{dt} = -2\frac{d[I_2]}{dt} =$	$=\frac{1}{2}\frac{a[HI]}{a}$
ut ut	L ut	ut ut	L ut
c) $-\frac{d[H_2]}{dt} = -\frac{d[I_2]}{dt} =$	$\frac{a[n]}{a}$	d) $-\frac{d[H_2]}{dt} = -\frac{d[I_2]}{dt} =$	$-\frac{a[HI]}{I}$
at at	at	at at	for 87.5% completion of the
reaction?	a mist order reaction is 1	iii. what is the time taken	for 87.5% completion of the
a) 1 hour	b) 2 hour	c) 3 hour	d) 4 hour
389. DDT on exposure to wa			
decomposition to 99%?		s 10 yr. How much time it v	will take for its
		a) 500 rm	d) 700 yr
a) 50 yr	b) 70 yr	c) 500 yr	u) 700 yi
390. In Arrhenius equation,			
a) Very low temperatur		b) Zero activation energ	y
	ture of reaction mixture	d) All of the above	1
391. The phenomenon of em	ission of visible light as a r		known as
a) Chemiluminescence		b) Fluorescence	
c) Phosphorescence	1.1.7	d) Photosensitization	
392. Chemical reactions with			
a) Very fast	b) Very slow	c) Moderately fast	d) Spontaneous
393 . In the reaction $3A \rightarrow 2B$	3, rate of reaction $+\frac{a(B)}{dt}$ is ϵ	equal to	
a) $-\frac{1}{3}\frac{d[A]}{dt}$	b) $-\frac{2}{3}\frac{d[A]}{dt}$	2d[A]	d) $-\frac{3}{2}\frac{d[A]}{dt}$
$\frac{dJ}{3} - \frac{1}{3} \frac{dt}{dt}$	$\frac{d}{3} \frac{d}{dt}$	$\frac{c_1 + \frac{c_2}{dt}}{dt}$	$\frac{dJ-\overline{2}}{dt}$
394. If the half-time for a par	rticular reaction is found to	be constant and independe	ent of the initial
concentration of the rea	actants, then the ratio is of		
a) First order	b) Zero order	c) Second order	d) None of these
395. Under the same reactio	n condition, initial concent	ration of 1.386 $mol\ dm^{-3}$ o	f a substance become half in
			$\binom{K_1}{K_0}$ of the rate constants for
	o order (k_0) of the reaction		1) 0 1-1 1 -3
		c) $1.5 mol^{-1} dm^{-3}$	d) $2 mol^{-1} dm^{-3}$
396. The order of a reaction			
a) 1	b) $-\frac{1}{2}$	c) $-\frac{3}{2}$	d) 2
a) I	4	2	12 12 12 12 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15
397. For reaction $A \rightarrow B$, the	8 , $A_2 = 10^{10}$ and $Ea_1 = 600$		
397. For reaction $A \rightarrow B$, the $A_2 e^{-E\alpha_2/RT}$. If $A_1 = 10$	8 , $A_2 = 10^{10}$ and $Ea_1 = 600$		$Y \rightarrow Y$, the rate constant $k_2 = 0$ mol, then the temperature at

a) $\frac{200}{3.506}$ K	b) $\frac{300}{2.303}$ K	c) $\frac{400}{6.506}$ K	d) $\frac{200}{5.204}$ K
398. Which of these do	es not influence the rate of re	action?	
a) Nature of the re	actants	b) Concentration of the	ne reactants
c) Temperature of the reaction		d) Molecularity of the	reaction
399. The concentration	of R in the reaction R→P was	s measured as a function of t	time and the following data is
obtained			
[R](molar) 1.0	0 0.75 0.40 0.10		
	0 0.05 0.12 0.18		
The order of the r			
a) Zero	b) First	c) Second	d) Third
And the second s		and the second s	(x) and time t is found to be a
	ng through the origin. Thus, r		
a) First order	b) Zero order	c) Third order	d) Second order
401. Rate constant of a	reaction depends upon	.a.	
a) Speed of reaction		b) Concentration of th	ne reactants
c) Pressure of the		d) Temperature	
	eaction $A \rightarrow B$ has an activation	on energy as x kg mol ⁻¹ of A	I. If energy change of the
	e activation energy of the rev		
a) -x	b) $y-x$	c) $x + y$	d) $x - y$
and the second s	wing statement in respect of z	zero order reaction.	-
III. The rate of the	reaction is independent of re	eactant concentration.	
	reaction is independent of te		
	ant of the reaction is indepen		
VI. The rate const	ant of reaction is independen	t of reactant cogeneration.	
	rrect statements/s		
a) I only	b) I and II only	c) III and IV only	d) I and IV only
404. If concentration o	f reactants is increased by X'	, the rate constant K become	es:
a) $e^{K/X}$	b) K/X	c) K	d) X/K
405. The correct expre-	ssion for the rate of reaction o	of elementary reaction, $A + $	$B \longrightarrow C$ is:
d[C]	b) $\frac{d[C]}{dt} = K[B]$	-d[A]	-d[A]
$\frac{d}{dt} = K[A]$	$\frac{dt}{dt} = K[B]$	$\frac{dt}{dt} = K[A][B]$	$\frac{dJ}{dt} = K[A]$
406. The threshold ene	ergy of a chemical reaction dep	pends upon:	
 a) Nature of react 	ing species		
b) Temperature			
c) Concentration	of species		
	sions per unit time or collisio		
407. A first order react	ion has a half-life period of 6	9.3 sec. At 0.10 mol litre $^{-1}$ 1	reactant concentration, rate will
be:			
a) $10^{-4} M \text{ sec}^{-1}$	b) $10^{-3} M \text{ sec}^{-1}$	c) $10^{-1} M \text{ sec}^{-1}$	d) $6.93 \times 10^{-1} M \text{ sec}^{-1}$
408. The rate constant			
$2N_2O_5 \rightarrow 4NO_2 + N_2O_5$ is mol L ⁻¹ is		rate is $2.40 \times 10^{-5} \text{ mol L}^{-1}$	s ⁻¹ , then the concentration of
a) 0.4	b) 0.8	c) 1.2	d) 3.2
A SECURITION OF THE PROPERTY O	ysed reaction is faster than mo		and the state of t
a) Greater	b) Lower	c) Same	d) None of these
		A STATE OF THE STA	re given below. The plot that
follows Arrhenius		(1)	O
Tono Ho In Inchia	-1		

- 411 . For the following homogeneous reaction, the unit of rate constant is A+B-
- b) s^{-1}

c) S

- d) s^{-1} mol L^{-1}
- 412. If 'a' is the initial concentration of a substance which reacts according to zero order kinetics and K is rate constant, the time for the reaction to go to completion is:
 - a) a/K
- b) 2/Ka
- c) K/a
- d) 2K/a
- 413. What is the two third life of a first order reaction having = $5.48 \times 10^{-14} s^{-1}$?
 - a) 2.01×10^{11} s
- b) 2.01×10^{13} s
- c) 8.08×10^{13} s
- d) 16.04×10^{11} s
- 414. The velocity constant of a reaction at 290 K was found to be $3.2 \times 10^{-3} \text{s}^{-1}$. When the temperature is raised to 310 K, it will be about
 - a) 6.4×10^{-3}
- b) 3.2×10^{-4}
- c) 9.6×10^{-3}
- d) 1.28×10^{-2}

- 415. For fourth order reaction, what is the unit of K?
- b) $\left(\frac{mol}{L}\right)^{+3} s^{-1}$
- c) $\left(\frac{mol}{L}\right)^{-3} s$
- d) $\left(\frac{mol}{I}\right)^{-3}$
- 416. The branch of chemistry which deals with the reaction rates and reaction mechanism is called:
 - a) Thermochemistry
- b) Photochemistry
- c) Analytical chemistry
- d) Chemical kinetics
- 417. For the reaction; $2N_2O_5 \rightarrow 4NO_2 + O_2$, rate and rate constant are $1.02 \times 10^{-4} M \, \text{sec}^{-1}$ and $3.4 \times 10^{-4} M \, \text{sec}^{-1}$ $10^{-5} \,\mathrm{sec^{-1}}\,M$ respectively, then concentration of $\mathrm{N_2O_5}$, at that time will be:
 - a) 1.732 M
- b) 3 M
- c) $1.02 \times 10^{-4} M$
- d) $3.5 \times 10^5 M$

- 418. In the following first order competing reactions:
 - $A + Reagent \rightarrow Product$
 - $B + \text{Reagent} \rightarrow \text{Product}$

Find the ratio of K_1/K_2 if only 50% of B will have been reacted when 94% of A has been reacted in same time is:

- a) 4.06
- b) 0.246
- c) 2.06
- d) 0.06
- 419. For which order half-life period is independent of initial concentration?
- b) First
- c) Second
- d) Third
- 420. For a given reaction, pressure of catalyst reduces the energy of activation by 2 kcal at 27°C. The rate of reaction will be increased by:
 - a) 20 times
- b) 14 times
- c) 28 times
- d) 2 times

421. For a reversible reaction $A \xrightarrow{K_1} B$,

Ist order in both the directions, the rate of reaction is given by:

- a) $K_1[A]$
- b) $-K_2[B]$
- c) $K_1[A] + K_2[B]$
- d) $K_1[A] K_2[B]$
- 422. A first order reaction is 20% complete in 10 min. Calculate the time for 75% completion of the reaction
 - a) 0.233 min
- b) 62.18 min
- c) 112.12 min
- d) 36.18 min

- 423. Order of radioactive disintegration reaction is
 - a) Zero
- b) First
- c) Second
- d) Third

424. Ethylene is produced by cyclobutane as:

CLICK HERE (>>

CHEMICAL KINETICS

						: ANS	W	ER K	EY:						
1)	b	2)	d	3)	b	4)	ь	165)	с	166)	b	167)	с	168)	
5)	b	6)	a	7)	b	8)	d		b	170)	d	171)	d	172)	
9)	c	10)	c	11)	c	12)	ь	173)	b	174)	b	175)	a	176)	
13)	a	14)	С	15)	a	16)	122	177)	d	178)	a	179)	d	180)	
17)	c	18)	d	19)	c	20)	d	181)	a	182)	c	183)	c	184)	
21)	b	22)	b	23)	d	24)	a	185)	a	186)	b	187)	d	188)	
25)	b	26)	c	27)	b	28)	a	189)	b	190)	a	191)	c	192)	
29)	a	30)	b	31)	a	32)	c	193)	c	194)	c	195)	a	196)	
33)	d	34)	d	35)	c	36)	d	197)	d	198)	a	199)	d	200)	
37)	c	38)	a	39)	a	40)	d	201)	a	202)	d	203)	b	204)	
41)	C	42)	a	43)	d	44)	b	205)	d	206)	C	207)	b	208)	
45)	C	46)	c	47)	a	48)	d	209)	a	210)	a	211)	b	212)	
49)	d	50)	C	51)	d	52)	d	213)	b	214)	b	215)	b	216)	
53)	d	54)	c	55)	d	56)	a	217)	b	218)	b	219)	d	220)	
57)	d	58)	a	59)	d	60)	a	221)	c	222)	b	223)	a	224)	
61)	d	62)	b	63)	c	64)	b	225)	a	226)	d	227)	d	228)	
65)	b	66)	d	67)	C	68)	c	229)	d	230)	b	231)	b	232)	
69)	d	70)	c	71)	C	72)	c	233)	d	234)	d	235)	b	236)	
73)	d	74)	c	75)	a	76)	c	237)	d	238)	a	239)	d	240)	
77)	b	78)	d	79)	b	80)	c	241)	d	242)	b	243)	d	244)	
81)	a	82)	a	83)	b	84)	b	245)	a	246)	c	247)	d	248)	
85)	b	86)	c	87)	d	88)	a	249)	C	250)	b	251)	a	252)	
89)	a	90)	d	91)	b	92)	b	253)	a	254)	b	255)	b	256)	
93)	a	94)	b	95)	a	96)	b	257)	C	258)	a	259)	b	260)	
97)	C	98)	a	99)	c	100)	b	261)	d	262)	b	263)	b	264)	
101)	C	102)	a	103)	b	104)	d	265)	d	266)	d	267)	b	268)	
105)	C	106)	c	107)	C	108)	d	269)	C	270)	c	271)	c	272)	
109)	d	110)	c	111)	a	112)	b	273)	C	274)	a	275)	b	276)	
113)	d	114)	C	115)	d	116)	b	277)	d	278)	d	279)	C	280)	
117)	d	118)	a	119)	d	120)	b	281)	a	282)	a	283)	a	284)	
121)	a	122)	b	123)	b	124)	с	285)	b	286)	d	287)	b	288)	
125)	b	126)	a	127)	c	128)	d	289)	b	290)	b	291)	d	292)	
129)	a	130)	d	131)	b	132)	d	293)	d	294)	C	295)	d	296)	
133)	b	134)	a	135)	c	136)	d	297)	c	298)	c	299)	a	300)	
137)	d	138)	d	139)	c	140)	a	301)	a	302)	d	303)	d	304)	
141)	C	142)	c	143)	c	144)	c	305)	b	306)	c	307)	b	308)	
145)	a	146)	a	147)	b	148)	b	309)	b	310)	b	311)	a	312)	
149)	c	150)	d	151)	a	152)	d	313)	c	314)	c	315)	b	316)	
153)	b	154)	a	155)	b	156)	c	317)	b	318)	C	319)	c	320)	
157)	d	158)	d	159)	C	160)	b	321)	a	322)	c	323)	a	324)	
161)	a	162)	a	163)	c	164)	a	325)	b	326)	d	327)	a	328)	

329)	d	330)	a	331)	b	332)	a	389)	b	390)	b	391)	a	392)	b	
333)	b	334)	C	335)	a	336)	b	393)	b	394)	a	395)	a	396)	a	
337)	d	338)	a	339)	b	340)	c	397)	b	398)	d	399)	a	400)	b	
341)	b	342)	d	343)	c	344)	c	401)	d	402)	d	403)	d	404)	c	
345)	b	346)	a	347)	d	348)	b	405)	C	406)	a	407)	b	408)	b	
349)	a	350)	b	351)	d	352)	a	409)	b	410)	a	411)	a	412)	a	
353)	c	354)	b	355)	a	356)	b	413)	b	414)	d	415)	a	416)	d	
357)	a	358)	C	359)	C	360)	c	417)	b	418)	a	419)	b	420)	c	
361)	c	362)	b	363)	b	364)	a	421)	d	422)	b	423)	b	424)	a	
365)	c	366)	a	367)	a	368)	b	425)	a	426)	c	427)	b	428)	c	
369)	d	370)	b	371)	b	372)	a	429)	a	430)	a	431)	d	432)	b	
373)	a	374)	b	375)	a	376)	c	433)	b	434)	a	435)	d	436)	b	
377)	c	378)	C	379)	b	380)	a	437)	d							
381)	b	382)	a	383)	b	384)	b									
385)	C	386)	d	387)	а	388)	C									

CHEMICAL KINETICS

: HINTS AND SOLUTIONS :

1 (b)

For first reaction,

$$E_1 = \frac{2.303RT_1T_2}{(T_1 - T_2)}\log\frac{k_1'}{k_1} \qquad \dots (i)$$

For second reaction

$$E_2 = \frac{2.303RT_1T_2}{(T_1 - T_2)}\log\frac{k_2'}{k_2}$$
 ... (ii)

Given, $E_1 > E_2$

$$\Rightarrow \frac{2.303RT_1T_2}{(T_1 - T_2)} \log \frac{k_1'}{k_1}$$

$$> \frac{2.303RT_1T_2}{(T_1 - T_2)} \log \frac{k_2'}{k_2}$$

$$\frac{k_1'}{k_1} > \frac{k_2'}{k_2}$$

2 (d)

These are the characteristics of effective collisions.

3 **(b)**

Pseudo first order rate constant is doubled as well as rate of reaction is doubled. It may be noted that in presence of acid, hydrolysis of ethyl acetate is a pseudo-unimolecular reaction but the actual value of k depends upon the concentration reaction but the actual value of k depends upon the concentration of H^+ ions, otherwise rate constant of a reaction is constant at constant temperature.

4 (b

We know that,
$$\frac{(t_{1/2})}{(t_{1/2})} = \left[\frac{a_2}{a_1}\right]^{n-1}$$

Where, n=order of reaction

Given,
$$(t_{1/2}) = 0.1s$$
, $a_1 = 400$

$$(t_{1/2}) = 0.8s, a_1 = 50$$

On substituting the values

$$\frac{0.1}{08} = \left[\frac{50}{400}\right]^{n-1}$$

On taking log both sides

$$\log \frac{0.1}{0.8} = (n-1)\log \frac{50}{400}$$

$$\log\frac{1}{8} = (n-1)\log\frac{1}{8}$$

0.90 = (n-1)0.90

n=2

6 **(a)**

For nth order reaction

$$k = (\text{mol L}^{-1})^{1-n} \text{ s}^{-1}$$

For 1st order reaction

Unit of
$$k = s^{-1}$$

For zero order reaction

Unit of $k = \text{mol } L^{-1} s^{-1} = M s^{-1}$

7 **(b**)

For II order reaction, $t_{1/2} = \frac{1}{Ka}$

8 (d

If $\frac{1}{[A]^2}$ vs times are a straight line then order of reaction is third.

9 (c)

For an endothermic reaction where ΔH represents the enthalpy of the reaction, the minimum value for the energy of activation is more than ΔH , ie, $E_a > \Delta H$

11 (c

$$T_{\frac{1}{2}} = T_{50}, x = \frac{R}{2}$$

$$T_{50} = \frac{R}{k_0}$$

So
$$T_{50} \propto R$$

$$T_{50} \propto \frac{R}{k_s}$$

Therefore, the formula of $t_{1/2}$ for a zero order reaction is $\frac{[R]_0}{2k}$

12 (b

The curve Y shows a gradual increase in the concentration with time.

13 (a)

Acid hydrolysis of sucrose is a pseudo unimolecular or pseudo first order reaction. Hydrolysis of sucrose in presence of mineral acid is a biomolecular reaction. But as water is taken in large excess, so the rate of reaction only depends upon concentration of sucrose. Hence, order of the reaction is one.

Therefore, it is called a pseudo first order reaction.

14 (c)

For first order reaction

$$\log[A] = -\frac{kt}{2.303} + \log[A]_0$$

$$r = K[A] = 4 \times 10^{-3} \times 0.02 = 8 \times 10^{-5} M \text{ sec}^{-1}$$

For the first order reaction,

$$\begin{split} 2N_2O_5 &\rightarrow 2NO_2 + O_2 \\ rate & \frac{dx}{dt} = k(N_2O_5) \quad ... (i) \end{split}$$

$$\frac{dx}{dt} = 2.400 \times 10^{-5} mol \ L^{-1} s^{-1}$$

$$k = 3.0 \times 10^{-5} s^{-1}$$

$$[N_2O_5] = ?$$

Substituting these values in (i)

$$2.4 \times 10^{-5} = 3.0 \times 10^{-5} [N_2 O_5]$$

$$or [N_2 O_5] = \frac{2.4 \times 10^{-5}}{3.0 \times 10^{-5}}$$

= 0.8mol L⁻¹

17 (c)

The definition of activation energy.

2.303
$$\log \frac{K_2}{K_1} = \frac{E_a}{R} \frac{[T_2 - T_1]}{T_1 T_2}$$

 $\therefore 2.303 \log \frac{K_2}{K_1} = \frac{9}{2 \times 10^{-3}} \left[\frac{10}{298 \times 308} \right];$
 $\therefore \frac{K_2}{K_1} = 1.63; i.e., 63\% \text{ increase}$

$$r = K[A]^1;$$

Thus,
$$7.5 \times 10^{-4} = K \times 0.5$$
;

$$\therefore K = 15 \times 10^{-4} \text{sec}^{-1} = 1.5 \times 10^{-3} \text{sec}^{-1}$$

20 (d)

$$2N_2O_5 \rightleftharpoons 4NO_2 + O_2$$

$$=\pm\frac{1}{\substack{stoichiometrics\\coefficient}}\frac{d[product\ or\ reactant}{dt}$$

$$\therefore Rate = \frac{-1}{2} \frac{d[N_2 O_5]}{dt} = + \frac{1}{4} \frac{d[N O_2]}{dt} = \frac{d[O_2]}{dt}$$

$$Or \quad -\frac{d[N_2O_5]}{dt} = 2\frac{d[O_2]}{dt}$$

$$Or \quad \frac{-2d[N_2O_5]}{dt} = 4\frac{d[NO_2]}{dt}$$

$$Or \quad \frac{d[NO_2]}{dt} = \frac{4d[O_2]}{dt}$$

21 (b)

For parallel path reaction

$$K_{\text{average}} = K_1 + K_2 = 1.26 \times 10^{-4} + 3.8 \times 10^{-5}$$

= $1.64 \times 10^{-4} \text{sec}^{-1}$

Also fractional yield of $B = \frac{K_B}{K_{av}} = \frac{1.26 \times 10^{-4}}{1.64 \times 10^{-4}} =$ 0.7683

Fractional yield of
$$A = \frac{K_A}{K_{av}} = \frac{3.8 \times 10^{-5}}{1.64 \times 10^{-4}} = 0.2317$$

23

For first order:
$$K = \frac{0.693}{t_{1/2}} = \frac{0.693}{1386} = 5 \times 10^{-4} \text{s}^{-1}$$

24

Ionic reactions are instantaneous one.

25

For zero order reaction, rate of reaction is independent of concentration i.e., rate of reaction does not depend upon the concentration of reactant.

$$\frac{dx}{dt} = k[A]^0$$

26 (c)

$$t_{1/2} = 100s$$

$$k = \frac{0.693}{t_{1/2}} = \frac{0.693}{100}$$

27 **(b)**

The rate law for the reaction is as

$$r = \frac{dx}{dt} = k(A)(B)^2(C)^0 = k(A)(B)^2$$

on increasing the concentration of A,B and C two

$$r' = \frac{dx}{dt} = k(2A)(2B)^2(2C)^0$$

= 8k(A)(B)²

Thus, the rate increases eight times.

Activation energy is the needed by reactant molecules to gain threshold energy level.

The rate of zero order reaction is independent of the concentration of the reactants or the concentration of the reactant do not change with time. Thus, the rate of reaction remains constant.

$$\frac{dx}{dt} = k(a-x)^0 \Rightarrow \frac{dx}{dt} = k$$
Or Rate=k

30 (b)

For first order reaction,

$$k = \frac{2.303}{t} \log_{10} \frac{a}{a - x}$$

Where, a= initial concentration

X= change in concentration during time't'. If 75% of the reaction was completed in 32 min,

$$k = \frac{2.303}{32} \log_{10} \frac{100}{100 - 75} = \frac{2.033}{32} \log_{10} 4$$

$$k = 0.0433 \text{min}^{-1}$$

Hence, time required for the completion of 50%

$$t = \frac{2.303}{0.0433} \log_{10} \frac{100}{100 - 75}$$
$$= \frac{2.033}{32} \log_{10} 2 = 16 \min$$

31 (a)

For the reaction:

Rate =
$$\frac{dx}{dt}$$
 = $k[CCl_3CHO][NO]$

$$k = \frac{dx}{dt \times [CCl_3CHO][NO]}$$
$$= \frac{\text{mol/L}}{\text{s \times mol/L} \times \text{mol/L}}$$

- $k = L \text{ mol}^{-1} \text{ s}^{-1}$
- 32 (c)

$$2A+B\to C$$

Rate of reaction

$$= -\frac{1}{2} \frac{d[A]}{dt} = -\frac{d[B]}{dt} = \frac{d[C]}{dt}$$

$$\therefore -\frac{d[A]}{dt} = 2 \frac{d[C]}{dt}$$

$$= 2 \times 2.2 \times 10^{-3}$$

$$= 4.4 \times 10^{-3} mol L^{-1} min^{-1}$$

33 (d)

For third order reaction,

rate =
$$k[A]^3$$

$$\frac{\text{mol } L^{-1}}{s} = k(\text{mol} - L^{-1})^3$$

$$k = \frac{1}{\text{mol}^2 \, L^{-2} \, s}$$

$$= \text{mol}^{-2} L^2 s^{-1}$$

(d)

 $CH_3COOC_2H_5 + H_2O \xrightarrow{H+} CH_3COOH + C_2H_5OH$ Since, in this reaction, water is excess, it is an example of psedo first order reaction (as rate depends only on the concentration of $CH_3COOC_2H_5$).

36 (d)

The efficiency of an enzyme in catalyzing a reaction is due to its capacity to lower the activation energy of the reaction

37 (c)

The rate of reaction is:

$$= -\frac{1}{2}\frac{d[A]}{dt} = -\frac{d[B]}{dt} = \frac{1}{3}\frac{d[C]}{dt} = \frac{d[D]}{dt}$$

38 (a)

> For exothermic reaction, activation energy of reverse reaction is greater than activation energy of forward reaction, ie, $E_f < E_r$

39 (a)

2.303
$$\log \frac{K_2}{K_1} = \frac{E_a}{R} \frac{[T_2 - T_1]}{T_1 T_2}$$

$$\therefore \qquad 2.303 \log 3 = \frac{E_a}{2} \frac{[313 - 273]}{313 \times 273}$$

$$\therefore 2.303 \log 3 = \frac{\alpha}{2} \frac{1}{313 \times 273}$$

$$E_a = 4693 \text{ ca}$$

 $\ln K = \ln A - \frac{E_a}{RT}$ is Arrhenius equation. Thus plots of $\ln K \ vs \ 1/T$ will give slope = E_a/R .

41 (c)

$$k = \frac{1}{t} \left[\frac{x}{a(a-x)} \right]$$

$$k = \frac{1}{500} \left[\frac{0.2a}{a(a - 0.2a)} \right]$$

$$k = \frac{1}{2000a}$$

$$\frac{1}{2000a} = \frac{1}{t} \left[\frac{0.6a}{a(a - 0.6a)} \right]$$

$$t = 3000 \, \text{s}$$

42 (a)

K does not change with time; also unit of *K* suggest it to be II order.

43 **(d)**

Follow review of rate of reaction.

44 **(b)**

Molecularity represents the number of molecules of reactants taking part in an elementary step of reaction.

45 (c)

$$t_{1/2} \propto (a)^{1-n}$$

or
$$t_{1/2} = Z(a)^{1-n}$$

or
$$\log_{t_1/2} = \log Z + (1-n)\log a$$

or
$$y = c + mx$$

Thus, slope = m=1-n or 1-n=0 \therefore n=1 and for I order reaction $t_{1/2}=\frac{0.693}{\kappa}$.

46 **(c)**

$$t_{1/2} \propto (a)^{1-n}$$

47 (a)

A pseudounimolecular reaction.

48 (d)

Rate becomes x^y times if concentration is made x time of a reactant giving y^{th} order reaction.

Rate = $k[A]^n[B]^m$

Concentration of A is doubled hence x=2, y=n and rate becomes= 2^n times

Concentration of B is halved ,hence $x = \frac{1}{2}$ and y = m

and rate becomes= $\left(\frac{1}{2}\right)^m$ times

Net rate becomes= $(2)^n \left(\frac{1}{2}\right)^m$ times

 $=(2)^{n-m}$ times

49 (d)

For the reaction $H_2(g) + Br_2(g) \rightarrow 2HBr(g)$

Rate of reaction = $k[H_2][Br_2]^{1/2}$

Molecularity of reaction = 1 + 1 = 2

Order of reaction = $1 + \frac{1}{2} = \frac{3}{2}$

50 (c

When heat energy is supplied, kinetic energy of reactant molecules increase. This will increase the number of collisions and ultimately rate of reaction will be enhanced.

51 (d)

$$t = \frac{2.303}{K} \log \frac{a}{(a-x)}$$

$$K = \frac{2.303}{20} \log \frac{1}{0.25}$$
$$= 0.06931 \text{ min}^{-3}$$

52 (d)

I step of mechanism B shows I order in both reactants.

53 (d)

$$K_a = Ae^{-E_a/RT}$$
 and $K_b = Ae^{-E_b/RT}$

Also,
$$K_a > K_b$$

$$E_a < E_b$$

Now notice that all the given facts are satisfied.

54 (c)

Half-life depends upon rate constant and rate constant (K) varies with temperature as $K = A \cdot e^{-E_R/RT}$; K increase with temperature. Also $t_{1/2} \propto$

 $\frac{1}{K}$

55 (d)

 $Rate = k[NOBr_2][NO]$...(i)

But NOBr2 is in equilibrium

$$k_{eq} = \frac{[NOBr_2]}{[NO][Br_2]}$$

 $[NOBr_2] = k_{eq}[NO][Br_2] ...(ii)$

Putting the $[NOBr_2]$ in (i)

 $rate = k.k_{eq}[NO][Br_2][NO]$

Hence, $rate = k.k_{eq}[NO]^2[Br_2]$

 $rate = k'[NO]^2[Br_2]$

where, k'.Keq

the order, of reaction with respect to NO(g) is 2

56 (a

For zero order reaction, for example,

 $A \rightarrow B$

$$\frac{-d[A]}{dt} = k[A]^0$$

$$\frac{-d[A]}{dt} = k$$

57 (d)

The increase in collision frequency brings in an increase in effective collisions and thus, rate of reaction increases.

58 (a

$$t_{1/2} \propto \frac{1}{a^{n-1}}$$

When n = 4

$$t_{1/2} \propto \frac{1}{a^3}$$

Hence, order of reaction = 4

59 (d)

There are two different reactants (say A and B).

 $A + B \rightarrow product$

Thus, it is a bimolecular reaction.

If
$$\frac{dx}{dt} = k[A][B]$$

It is second order reaction

If
$$\left(\frac{dx}{dt}\right) = k[A]$$

Or
$$=k[B]$$

It is first order reaction.

Molecularity is independent of rate, but is the sum of the reacting substance thus it cannot be unimolecular reaction.

rate =
$$K[A][B]^2$$

$$10^{-2} = K[1][1]^2$$

or
$$K = 10^{-2} \, \text{litre}^2 \, \text{mol}^{-2} \, \text{sec}^{-1}$$

: rate II =
$$10^{-2}[0.5] \times [0.5]^2$$

$$= 1.2 \times 10^{-3}$$
 mol/litre-sec

If
$$E_a = 0$$
, $k = Ae^{-E_a/RT} = Ae^0 = A$

Hence, k becomes independent of T

62 **(b)**

Larger is surface area, more is rate of reaction.

63 (c)

Reactions having lower energy of activation occurs more fast under similar experimental conditions.

64 (b)

For the first order reaction

$$Rate\left(\frac{dx}{dt}\right) = k[A]$$

[A]→concentration of reactant

K→rate constant

Given that,

$$\frac{dx}{dt} = 1.5 \times 10^{-2} mol \ L^{-1} min^{-1}$$

K=? and [A]=0.5 M

$$1.5 \times 10^{-2} = k \times 0.5$$

$$k = \frac{1.5 \times 10^{-2}}{0.5} = 3 \times 10^{-3} \text{min}^{-1}$$

For first order reaction,

Half-life period $t_{1/2} = \frac{0.693}{k} = \frac{0.693}{3 \times 10^{-2}}$

=23.1min

65 **(b)**

Temperature coefficient,

$$=\frac{k_t + 10}{k_t}$$
$$2 = \frac{10^{-3}}{k_t}$$

$$k_t = \frac{10^{-3}}{2} = \frac{10 \times 10^{-4}}{2} = 5 \times 10^{-4}$$

66

The minimum energy required by reaction molecules to undergo reaction is called activation energy.

67 (c)

For an nth order reaction

$$t_{1/2} \propto \frac{1}{a^{n-1}}$$

For 1st order reaction $t_{1/2} \propto \frac{1}{a^{1-1}} \propto a^0$

68

For every 10°C rise of temperature, rate is doubled. Thus, temperature coefficient of the reaction=2

When temperature is increased by 50°C, rate

$$=2^{50/10} = 2^5$$
 times=32 times

69 (d)

Order may or may not be equal to molecularity.

70 (c)

Use
$$r = K[A]^m[B]^n$$

71 (c)

The reaction occurring in two steps has two activation energy peaks. The first step, being fast needs less activation energy. The second step being slow, needs more activation energy. Therefore, second peak will be higher than the

73 (d)

$$r_1 = K[A]^1; \quad r_2 = K[A]^2, r_3 = K[A]^3$$

if
$$[A] > t$$
; $r_3 > r_2 > r_1$

$$t = \frac{2.303}{k} \log \frac{a}{(a-x)}$$

If
$$t = t_{x,y}$$
: $x = a/4$

$$\therefore t_{1/4} = \frac{2.303}{k} \log \frac{a}{(a - 1/4)}$$

$$\frac{2.303}{k}\log\frac{4}{3}$$

75 (a)

$$K = Ae^{-E_a/RT}$$

$$100 \xrightarrow{200} 50$$

$$50 \xrightarrow{4 days} 25$$

$$25 \xrightarrow{8 \text{ days}} 12.5$$

Hence, the order of reaction is second.

For second order reaction,

$$k = \frac{1}{2} \left[\frac{x}{a(a-x)} \right] = \frac{1}{2} \left[\frac{50}{100 \times 50} \right]$$

$$= \frac{1}{200}$$

$$t_{1/2} = \frac{1}{k \cdot a}$$

$$\Rightarrow = \frac{1}{1/200.100}$$

$$= \frac{200}{100} = 2 days$$

77 **(b)** $\frac{1}{3} \frac{d[Br_2]}{dt} = -\frac{1}{5} \frac{d[Br^-]}{dt}$

The reaction is said to be of second order if its reaction rate is determined by the variation of two concentration terms of reactants. $\text{CH}_3\text{COOCH}_3 + \text{NaOH} \rightarrow \text{CH}_3\text{COONa} + \text{H}_2\text{O}$ Is an example of second order reaction.

79 **(b)**Temperature coefficient is the ratio of two velocity constant having the difference of 10°C.
For most of the reaction the value of temperature coefficient lies between 2 and 3

Rate is $\frac{dx}{dt}$ or $-\frac{d[A]}{dt}$;

Where x stands for product concentration and [A] stands for reactant concentration. It continuously decreases with decrease in concentration of reactant with time.

82 **(a)** For zero order reaction, $t_{1/2} \propto [R]_0$

Effect of temperature on reaction rate is given by Arrhenius equation $k = Ae^{-E_a/RT}$

84 **(b)**This is Arrhenius equation.

85 **(b)**Let ,initial concentration=a
Final concentration=a- $\frac{2}{3}a = \frac{a}{3}$ $t_{\frac{2}{3}} = \frac{2.303}{k} log \frac{a}{a/3}$ $= \frac{2.303}{5.48 \times 10^{-14}} log 3$

86 (c) Let the order with respect to A and B is x and y respectively. Hence, $Rate \ r = [A]^x [B]^y ...(i)$

On doubling the concentration of A, rate increases

4 times,

 $4r = [A]^x [B]^y$... (ii)

From Eqs. (i) and (ii)

 $\frac{1}{4} = \left(\frac{1}{2}\right)^3$

: order with respect to A is 2

If concentration of A and B both are doubled,

 $8r = [2A]^x [2B]^y \dots (iii)$

From Eqs. (i) and (iii), we get

$$\frac{1}{8} = \frac{1}{(2)^{x}} \cdot \frac{1}{(2)^{y}} \qquad [\because x = 2]$$

$$\frac{1}{8} = \frac{1}{(2)^{2}} \cdot \frac{1}{(2)^{y}}$$

$$\frac{1}{8} = \frac{1}{4 \times 2^{y}}$$

$$2^{y} = 2$$

$$\therefore Y = 1$$

Hence, differential rate equation is

 $r \propto [A]^2 [B]^1$ or $\frac{dC}{dt} = k C_A^2 \times C_B$

[Where, C_A and C_B =concentrations of A and B]

87 **(d)** $r = k[A]^n$...(i)

When concentration is doubled then

 $4r = k(2A)^n$...(ii)

Divide Eq. (ii) by (i)

 $4 = 2^n$ n = 2

88 (a) $t = \frac{0.693}{k} log \frac{[A]_0}{[A]}$ $= \frac{2.303}{60} log \frac{a}{\frac{a}{16}} = \frac{2.303}{60} log 16$ $= \frac{2.303}{60} \times 1.204$ = 0.0462s $= 4.6 \times 10^{-2}s$

89 **(a)**From the unit of rate constant $(i.e., s^{-1})$, it is clear that the reaction is of first order. $2N_2O_5 \rightarrow 4NO_2 + O_2$ Hence, for first order reaction,

$$k = \frac{2.303}{t} \log \frac{p_0}{p_t}$$

$$\therefore 3.38 \times 10^{-5} = \frac{2.303}{10 \times 60} \log \frac{500}{p_t}$$
Or $\log \frac{500}{p_t} = 0.00880$

Or
$$log \frac{500}{p_t} = 0.00880$$

$$\therefore \quad \frac{500}{p_t} = anti \log 0.00880$$

$$=1.02$$

$$p_t = \frac{500}{1.02} = 490 \ atm$$

$$t = \frac{2.303}{k} \log \frac{a}{a - x}$$

$$\therefore x = \frac{3}{4} a$$

$$\therefore t = \frac{2.303}{k} \log \frac{a}{a - \frac{3}{4} a}$$

$$= \frac{2.303}{k} \log 4$$

$$2N_2O_5 \rightarrow 4NO_2 + O_2$$

Rate of decomposition of $N_2O_5 = -\frac{1}{2}\frac{k[N_2O_5]}{dt}$

Rate of formation of $NO_2 = \frac{1}{4} \frac{k[NO_2]}{dt}$

$$\label{eq:normalization} \begin{split} \therefore \frac{\text{rate of decompsition of N}_2 O_5}{\text{rate of formation of NO}_2} = \frac{\frac{1}{2} k \frac{[N_2 O_5]}{\text{dt}}}{\frac{1}{4} k \frac{[NO_2]}{\text{dt}}} \end{split}$$

or
$$\frac{1}{2}k\frac{[N_2O_5]}{dt} \times \frac{4}{1}\frac{dt}{k[NO_2]}$$

= $\frac{4}{2} = \frac{2}{1} = 2:1$

$$k = \frac{2.303}{t} \log \frac{a}{a - x}$$

Given, reaction is 75% completed is 32 min

A=100,x=75

$$k = \frac{2.303}{32} \log \frac{100}{100-75} \qquad ...(1)$$

For 50% completion of reaction

A=100, x=50

$$k = \frac{2.303}{t} log \frac{100}{100-50} \qquad ...(2)$$

 $LHSof\ Eq.(1) = Eq.(2)$

 \therefore RHSof Eq. (1) = Eq. (2)

$$\frac{2.303}{32} log \frac{100}{100 - 75} = \frac{2.303}{t} log \frac{100}{100 - 50}$$

$$or \frac{2.303}{32} log 4 = \frac{2.303}{t} log 2$$

Or
$$\frac{t}{32} = \frac{\log 2}{\log 4}$$
 or $t = \frac{32 \times \log 2}{2 \log 2}$

t = 16 min

: reaction will be 50% completed in 16 min

Rate
$$\left(\frac{+d[C]}{dt}\right) = k[A][B]$$

Thus, the order of reaction w.r.t. A=1

The order of reaction w.r.t.B=1

Total order of reaction=1+1=2

95

The intersection point indicates that half of the reactant X is converted into Y.

96 (b)

At
$$T_1 = 200 \, K$$
, $T_2 = 400 \, K$, $k_1 = k$, $k_2 = 10 \, k$

$$\because \log \frac{k_2}{k_1} = \frac{E_a}{2.303R} \left(\frac{T_2 - T_1}{T_1 \cdot T_2} \right)$$

$$\log \frac{10 \ k}{k} = \frac{E_a}{2.303R} \left(\frac{400 - 200}{400 \times 200} \right)$$

$$E_a = 921.2 R$$

97 (c)

Zero order reactions occur with constant rate.

98 (a)

$$t = \frac{2.303}{K} \log \frac{a}{(a-x)};$$
Thus, $K = \frac{2.303}{10} \log 8 = (2.303 \times 3 \log 2) / 10$

99 (c)

For the reaction $A \rightarrow B$

On increasing the concentration of reactant (i.e.,A) by 4 times, the rate of reaction becomes double, hence order of reaction is $\frac{1}{2}$.

100 (b)

The rate of chemical reaction always decreases with time as reaction proceeds due to decrease in number of reactant molecules. Only for zero order reactions the rate of chemical reaction remains same.

101 (c)

For a zero order reaction,

$$R \rightarrow \text{product}$$

$$Rate = -\frac{d[R]}{dt} = k[R]^0 = k$$

$$-d[R] = k.di$$

Integrating the above equation.

$$-\int d[R] = k \int dt$$

-[R] = kt + I ...

Where, I is integration constant

At
$$t = 0, R = [R]_0$$

$$-[R]_0 = k \times 0 + I$$

$$I = -[R]_0$$

Put this value in Eq. (i)

$$-[R] = kt - [R]_0$$

or $[R] = -kt + [R]_0$

102 (a)

For first order reaction,

Half-life period
$$(t_{1/2}) = \frac{0.693}{k}$$

Where, k=rate constant

$$\begin{aligned} \left(t_{1/2}\right) &= \frac{0.693}{69.3} s^{-1} \\ &= 0.01 \, s^{-1} \end{aligned}$$

103 (b)

For nth order reaction:

$$t_{1/2} \propto \frac{1}{a^{n-1}}$$

For second order reaction

$$t_{1/2} = \frac{1}{ka} = \frac{1}{0.5 \times 0.2} = \frac{100}{10} = 10 \text{ min}$$

104 (d)

$$r = K[\mathsf{CH_3COCH_3}]^a[\mathsf{Br_2}]^b[\mathsf{H}^+]^c$$

∴
$$5.7 \times 10^{-5}$$

$$= K[0.30]^a[0.05]^b[0.05]^c ... (1)$$

$$5.7 \times 10^{-5}$$

$$= K[0.30]^{a}[0.10]^{b}[0.5]^{c} \qquad \dots (2)$$

 1.2×10^{-4}

$$= K[0.30]^a[0.10]^b[0.10]^c \qquad \dots (3)$$

$$3.1 \times 10^{-4}$$

$$= K[0.40]^a[0.05]^b[0.20]^c$$
 ... (4)

By (1) and (2) a = 1

By (2) and (3) b = 0

By (3) and (4) c = 1

:
$$r = K[CH_3COCH_3]^1[Br_2]^0[H^+]^1$$

105 (c)

Unit of rate constant

$$= \frac{time^{-1}}{conc^{(n-1)}}$$

Where, n=order of reaction

Given, unit of rate constant = $L mol^{-1} s^{-1}$

∴ order of reaction =2

106 (c)

Activation energy of a chemical reaction can be determined by evaluating rate constants at two different temperatures

$$\log \frac{k_2}{k_1} = \frac{E_a}{2.303 \, R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$$

107 (c)

Molecularity can never be fractional.

109 (d)

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$

For this reaction, rate

$$(r_1) = k[SO_2]_1^2[O_2]_1$$
 (i)

On doubling the volume of vessel, concentration would be half. Hence,

Rate
$$(r_2) = k \left(\frac{[SO_2]_1}{2} \right)^2 \left(\frac{[O_2]_1}{2} \right) = \frac{r_1}{8}$$

$$\frac{r_1}{r_2} = 8:1$$

110 (c)

$$r = k[RCl]$$

If
$$[RCl] = \frac{1}{2}$$
, then rate= $\frac{r}{2}$

111 **(**a

$$A \xrightarrow{k_1} B \xrightarrow{k_2} C \xrightarrow{k_3} D$$

$$k_3 > k_2 > k_1$$

As k_1 is slowest hence $A \rightarrow B$ is the rate determining step of the reaction

112 **(**b

$$k = \frac{2.303}{t} \log_{10} \frac{a}{a - x}$$

$$=\frac{2.303}{10}\log_{10}\frac{100}{80}$$

$$=\frac{2.303}{10} \left[\log 10 - 3 \log 2 \right]$$

$$=\frac{2.303}{10} \left[1 - 3 \times 0.3010\right]$$

$$k = 0.0223$$

113 (d)

$$E_a(A \rightarrow B) = 80 \text{ kJ mol}^{-1}$$

Heat of reaction $(A \rightarrow B) = 200 \text{ kJ mol}^{-1}$

For $(B \rightarrow A)$ backward reaction,

 $E_a(B \to A) = E_a(A \to B) + \text{heat of reaction}$

 $= 80 + 200 = 280 \text{kJ mol}^{-1}$

114 (c)

For endothermic reaction $A \rightarrow B$

Activation energy = 15 kcal/mol

Energy of reaction = 5 kcal/mol

Hence, activation energy for the reaction $B \to A$ is

15 - 5 = 10 kcal/mol

For zero order
$$[A]_t = [A]_0 - kt$$

 $0.5 = [A]_0 - 2 \times 10^{-2} \times 25$
 \therefore $[A]_0 = 1.0 \text{ M}$

116 (b)

$$t = \frac{2.303}{k} \log \frac{a}{a - x}$$

Where, $k=\text{rate constant}=10^{-3}s^{-1}$

a=initial amount=100

a - x=amount left after time t=25

t=time to leave 25% reaction

117 (d)

By increasing 10 K temperature the rate of reaction becomes double. When temperature is increased from 303 K to 353 K, the rate increases in steps of 10° and has been made 5 times. Hence, the rate of reaction should increases 25 times i.e., 32 times.

118 (a)

Temperature coefficient

$$= \frac{\text{rate of recation at } 35^{\circ}\text{C}}{\text{rate of recation at } 25^{\circ}\text{C}} = 2$$

Thus, increase in rate is two times, when temperature is increased 10°C. Hence, by the increase of 70°C(100-30=70°C), the increase in rate will be

$$= (2)^7 : 70^\circ = 7 \times 10^\circ$$

= 128 times

= 128 times

119 (d)

$$\log \frac{k_2}{k_1} = \frac{E_a}{2.303R} \left(\frac{T_2 - T_1}{T_1 T_2} \right)$$

$$\log \frac{k_2}{k_1} = \frac{9000}{2.303 \times 2} \left(\frac{5}{295 \times 300} \right)$$

$$\log \frac{k_2}{k_1} = 0.1103$$

$$\frac{k_2}{k_1} = 1.288, k_2 = 1.288 \, k$$

ie, increase by 28.8%

120 (b)

$$\frac{1}{2}A \rightarrow 2B$$

Remember for $a A \rightarrow bB$

$$-\frac{1}{a}\frac{d[A]}{dt} = \frac{1}{b}\frac{d[B]}{dt}$$
 Rate of reaction

For the given reaction

$$-\frac{2d[A]}{dt} = \frac{1}{2}\frac{d[B]}{dt}$$
 = rate of reaction

Rate of disappearance of A

$$= -\frac{d[A]}{dt} = \frac{1}{2 \times 2} \frac{d[B]}{dt}$$
$$= \frac{1}{4} \frac{d[B]}{dt}$$

121 (a)

$$K = \frac{2.303}{k} \log \frac{a}{(a-x)}$$

$$= \frac{2.303}{40} \log \frac{0.1}{0.025} = 0.0347$$

$$\therefore r = K \times [A] = 0.0347 \times 0.01$$

$$= 3.47 \times 10^{-4} M/min$$

123 (b)

For zero order reaction

$$x = kt$$

=
$$0.2 \text{ mol dm}^{-3} \text{ h}^{-1} \times \frac{30}{60} \text{ h}$$

 $= 0.1 \text{ mol dm}^{-3}$

Now, concentration = 0.05 mol dm^{-3}

Hence, initial concentration = 0.1 + 0.05 =0.15 mol dm⁻³

124 (c)

For the reaction,

$$2X + Y \rightarrow Z$$

Rate =
$$-\frac{1}{2} \frac{d[X]}{dt} = \frac{d[Z]}{dt}$$

= 0.05 mol L⁻¹ min⁻¹

$$-\frac{1}{2}\frac{d[X]}{dt} = 0.05$$

$$-\frac{d[X]}{dt} = 2 \times 0.05$$

$$= 0.1 \text{ mol L}^{-1} \text{ min}^{-1}$$

125 (b)

$$X(g) \rightarrow Y(g) + Z(g)$$

The reaction is a first order reaction.

Hence,

$$k = \frac{0.693}{t_{1/2}} = \frac{2.303}{t} log \frac{a}{(a-x)}$$

$$02234 \frac{0.693}{10} = \frac{2.303}{t} log \frac{a}{a/10}$$
Or
$$t = \frac{2.303 \times 10}{0.693} \times log 10$$

$$= 33 min$$

126 (a)

To be solved with the help of formula,

$$\begin{split} \log \frac{k_2}{k_1} &= \frac{E_a}{2.303 \, R} \left[\frac{T_2 - T_1}{T_1 T_2} \right] \\ T_1 &= 273 + 27 = 300 \, \mathrm{K} \\ T_2 &= 273 + 67 = 340 \, \mathrm{K} \\ \log \frac{6.9 \times 10^{-3}}{3.45 \times 10^{-5}} &= \frac{E_a}{2.303 \times 8.31} \left[\frac{340 - 300}{340 \times 300} \right] \\ \log 200 &= \frac{E_a}{19.1379} \times \frac{40}{102000} \\ 2.3010 &= \frac{E_a}{19.14} \times \frac{4}{10200'}, \\ E_a &= \frac{19.14 \times 10200 \times 2.3010}{4} \\ &= 112304.907 \, \mathrm{J} = 112.3 \, \mathrm{kJ} \end{split}$$

 $\frac{dx}{dt} = K(a-x)^2$ is differential form of II order. Integrate it to get (c).

128 (d)

$$A^m + B^n \rightarrow ABx$$

In this case,

Overall order of reaction = m + n

Hence, code 3 is wrong

129 (a)

For the first order reaction,

$$t_{1/2} = \frac{1n2}{k}$$
Or $t_{1/2} = \frac{0.693}{k}$

130 (d)

Order of reaction is an experimentally determined quantity and thus, cannot be predicted from the given equation.

131 (b)

The rate for first order reaction is expressed as $A \rightarrow products$

Rate =
$$-\frac{d[A]}{dt}$$

Rate=k[A]

And the rate constant (k) is given as

$$k = \frac{2.303}{t} log \frac{[A_0]}{[A_t]}$$

$$or - k = \frac{t}{t} log$$

or
$$-k = \frac{t}{2.303} log \frac{[A_t]}{[A_0]}$$

$$t_{1/2} = \frac{1}{(a)^{n-1}}$$

Where, n=order of reaction a= initial concentration For first order reaction,

$$t_{1/2} = \frac{1}{a^{n-1}}$$
$$a = \frac{1}{a^0} = 0$$

Thus for a first order reaction, $t_{1/2}$ is independent of initial concentration.

133 (b)

Relation between $(t_{1/2})$ and initial concentration of reactant for (n-1) order reaction $t_{1/2} \propto [R]_0^{2-n}$

134 (a)

$$K = \frac{2.303}{40} \log \frac{0.1}{0.025}$$

$$\therefore K = 0.03466 \text{ min}^{-1}$$

$$\text{rate} = K \times 0.01 = 0.03466 \times 0.01$$

$$= 3.47 \times 10^{-4} M \text{ min}^{-1}$$

135 (c)

Rate of endothermic reactions increase with increase in temperature while that of exothermic reactions decrease with increasing temperature.

136 (d)

$$k = \frac{2.303}{t} \log_{10} \frac{a}{a - x}$$

For half-life period, $x = \frac{a}{2}$

$$t = \frac{2.303}{k} \log_{10} \frac{a}{a - \frac{a}{2}}$$

$$t = \frac{2.303}{k} \log_{10} 2$$

$$: t = t_{1/2}$$

$$t_{1/2} = \frac{2.303 \times 0.3010}{k}$$

$$t_{1/2} = \frac{0.693}{k}$$

: Rate constant (k') > rate constant (k'')

Greater the rate constant lesser will be the activation energy

$$\therefore E_a' < E_a''$$

The reactant concentration drop from 0.8 to 0.4 M, i. e.,50% takes place in 15 minute.

$$K = \frac{2.303}{15} \log \frac{0.8}{0.4} = \frac{0.693}{15} = 0.0462 \,\text{min}^{-1}$$
Also, $t = \frac{2.303}{K} \log \frac{0.1}{0.025} = \frac{2.303}{0.0462} \log \frac{0.1}{0.025}$

$$= 30 \,\text{min}$$

139 (c)

For II order,
$$t = \frac{1}{Ka} \frac{x}{(a-x)}$$

$$t = \frac{1}{8 \times 10^{-5} \times 1} \left(\frac{0.5}{0.5} \right)$$
$$= 1.25 \times 10^{-4} \text{ minute}$$

140 (a)

The Arrhenius equation can be written as

$$\log k = \log A - \frac{E_a}{2.303 \, RT}$$

On comparing this equation with standard equation of straight line

$$y = mx + c$$
, we get,

$$y = \log k$$

$$x = \frac{1}{T}$$

$$m = -\frac{E_a}{2.303R}$$

$$c = \log A$$

Hence, on plotting graph between $\log k$ (y axis) and $\frac{\iota}{\tau}$ (x-axis), we get a line with slope equal

$$m = -\frac{E_a}{2.303 \, R}$$

$$K_1 = 10^{16} e^{-2000/T}; K_2 = 10^{15} e^{-1000/T}$$

if
$$K_1 = K_2$$
 then $10^{16} e^{-2000/T}$

$$= 10^{15}e^{-1000/T}$$

or
$$\log 10 - \frac{2000}{T} = -\frac{1000}{T}$$
 or $T = \frac{1000}{2.303}$ K

142 (c)

As we know that, rate of reaction is directly proportional to concentration of reactant and inversely proportional to the volume of vessel.

i. e., concentration $\alpha \propto \frac{n}{\epsilon}$

For a given reaction,

$$2NO(g) + O_2(g) \rightleftharpoons 2NO_2(g)$$

Rate of reaction=
$$k[NO]^2[O_2]$$

If volume of vessel is reduced by $\frac{1}{3}rd$ of its initial value, then concentration of compound is increase by 3 times. Hence, the rate of reaction will be increased by 27 times.

143 (c)

For a zero order reaction

$$k_0 = \frac{[A_0]}{2t_{1/2}}$$

Since,
$$[A]_0 = 2 M$$
, $t_{1/2} = 1 h$

So,
$$k_0 = 1$$
 and

$$k_0 = \frac{\Delta x}{t}$$
 or $t = \frac{0.50 - 0.25}{1} = 0.25 h$

144 (c)

$$A + B \rightarrow C + D$$

Rate
$$(r)=k[A]^{a}[B]^{b}$$
 ...(i)

$$2r = k[2A]^a[B]^b$$
 ... (ii)

$$3r = k[A]^a [9B]^b$$
 ...(iii)

Dividing eq.(ii) by eq.(i)

$$2 = 2^a \text{ or } a = 1$$

Dividing eq (iii) by eq.(i)

$$3 = 9^b \text{ or } 3 = 3^{2b} \text{ or } 2b = 1 \text{ or } b = 1/2$$

So order of reaction = $1 + \frac{1}{2} = \frac{3}{2}$

145 (a)

$$N = \frac{N_0}{2^n}$$

$$n = \frac{T}{t_{1/2}} = \frac{40}{20} = 2$$

$$N = \frac{N_0}{2^2} = \frac{N_0}{4}$$

146 (a)

$$p_1 = 80 \text{ kPa}, (t_{1/2})_1 = 350s$$

$$p_1 = 40 \text{ kPa}, (t_{1/2})_1 = 175s$$

$$\frac{80}{40} = \frac{350}{175} = 2$$

$$\therefore \frac{p_1}{p_2} = \frac{\left(\mathsf{t}_{1/2}\right)_1}{\left(\mathsf{t}_{1/2}\right)_2} = \frac{a_1}{a_2}$$

 $(t_{1/2}) \propto a(zero \ order \ reaction)$

147 (b)

Thermal decomposition,

$$CH_3CHO \xrightarrow{\Delta} CH_4 + CO$$

$$\frac{dx}{dt} = k[CH_3CHO]^{3/2}$$

148 (b)

For the reaction : $A \rightarrow 2B + C$

 p_1 0 0

After 10 min $p_1 - p$ 2p p

After long time $0 2p_1 p_1$

Total pressure = $(p_1 - p + 2p + p) = 176 \text{ mm}$

Total pressure after long time

$$=2p_1+p_1=270 \text{ mm}$$

Calculate the value of p from above two equation and then the difference of p_1 and p will be the pressure of A

149 (c)

Where,

 E_a =activation energy of forward reaction $E_a^{\prime\prime}$ =activation energy of backward reaction The above energy profile diagram shows that $E_a > E_a^{\prime\prime}$

The potential energy of the product is greater than that of the reactant, so the reaction is endothermic.

$$E_a = E_a'' + \Delta E$$

$$E_t = E_a \text{ or } E_t > E_a''$$

150 (d)

Combination of H_2 and B_{r2} to give HBr is zero order reaction as the rate of reaction is not affected by the concentration of reactants.

$$H_2 + B_{r2} \xrightarrow{hv} 2HBr$$

151 (a)

Rate of reaction =
$$\frac{1}{4} \frac{d(NO_2)}{dt} = \frac{5.2 \times 10^{-3}}{4 \times 100}$$

= $1.3 \times 10^{-5} Ms^{-1}$

152 (d)

$$9 = \left(\frac{3.24 \times 10^{-2}}{1.2 \times 10^{-3}}\right)^n$$

$$9 = (3^3)^{2/3}$$

order of the reaction is=2/3

153 (b)

For zero order reaction

$$k = \frac{a}{2t_{1/2}} = \frac{a}{2 \times 100} = \frac{a}{200}$$

When 80% completion take place

$$k = \frac{x}{t}$$

$$\frac{a}{200} = \frac{0.80a}{t}$$

$$t = 200 \times 0.8 = 160 \text{ min}$$

154 (a)

 $2A + B \rightarrow product$

[B] is doubled, half-life didn't change Half-life is independent of change in concentration of reactant i.e., first order First order w.r.t. to B

When [A] is doubled, rate increased by two times ⇒ First order w.r.t.A

Hence, net order of reaction =1+1=2

Unit for the rate constant= $conc.^{(1-n)}t^{-1}$

$$= (mol^{-1})^{-1}.s^{-1}$$

 $L.mol^{-1}s^{-1}$

156 (c)

$$H_2O + O \rightarrow 2OH$$
; $\Delta H = 72kJ$ at 500 K;

Given
$$E_a = 77 \text{ kJmol}^{-1}$$

$$20H \rightarrow H_20 + 0$$
; $E_{a_{B.R.}}$

For a reaction $E_{a_{FR}} = \Delta H + E_{a_{BR}}$

$$\therefore 77 = 22 + E_{a_{B,R}}$$

$$\therefore E_{a_{B,R}} = 5 \text{kJ mol}^{-1}$$

157 (d)

According to Arrhenius equation, the relationship between the activation energy and temperature is $k=Ae^{-E_{a}/RT}$

$$\log k = \frac{-E_a}{2.303 \, RT} + \log A$$

Activation energy decreases with rise in temperature, thereby increasing the rate of the reaction.

158 (d)

rate =
$$K[A]^1$$

$$K = \frac{2.0 \times 10^{-5}}{0.01} = 2.0 \times 10^{-3} \,\mathrm{s}^{-1}$$

$$t_{1/2} = \frac{0.693}{2 \times 10^{-3}} = 347s$$

159 (c)

For a zero order reaction, the plot of concentration of reactant vs time is a straight line (linear) with a negative slope and non-zero intercept.

$$r = K[A]^m[B]^n;$$

Also, $\frac{r}{4} = K[A]^m[2B]^n$
 $4 = \left(\frac{1}{2}\right)^n \text{ or } 2^2 = 2^{-n}$

161 (a)

The ratio of rate constant when temperature is raised 10°C, is called temperature coefficient. For most of the reaction, it has a value of 2. Hence, for the given reaction, Rate constant at 290 K= 3.2×10^{-3} \therefore Rate constant at 300 K= $2 \times 3.2 \times 10^{-3}$ = 6.4×10^{-3}

162 (a)

 $\frac{dc}{dt}$ represent the change in concentration of reactant with time. As, in a reaction, concentration of reactant always decrease with time hence, rate of reaction is represented as $\frac{-dc}{dt}$.

163 (c)

$$k = \frac{2.303}{t} log \frac{A_0}{A_t}$$
$$= \frac{2.303}{2 \times 10^4} log \frac{800}{50}$$
$$= 1.386 \times 10^4 s^{-1}$$

164 (a)

For,
$$N_2 + 3H_2 = 2NH_3$$

Rate of reaction $= -\frac{d[N_2]}{dt} = -\frac{1}{3}\frac{d[H_2]}{dt} = \frac{1}{2}\frac{d[NH_3]}{dt}$
Where, $-\frac{d[N_2]}{dt}$ is rate consumption of $N_2(-ve \text{ sign})$
 $-\frac{d[H_2]}{dt}$ is rate of consumption of $H_2(-ve \text{ sign})$
 $\frac{+d[NH_3]}{dt}$ is rate of formation of $NH_3(+ve \text{ sign})$

Individual rates become equal when each of these is divided by their respective stoichiometric coefficient.

165 (c)

Given,
$$R_1 = k[A]^2[B]$$

According to equation $R_2 = k[3A]^2[B]$
= $k \times 9[A]^2 2[B]$
= $18 \times k[A]^2[B]$
= $18R_1$

167 (c)

For the reaction,

$$A+B \to C$$

 $Rate = k[A]_0^x.[B]_0^y$
 $\frac{Rate_2}{Rate_3} = \frac{k(0.024)^x(0.070)^y}{k(0.024)^x(0.035)^y} = \frac{0.80}{0.10}$
 $(2)^y = 8$
 $y = 3$
 $\frac{Rate_3}{Rate_1} = \frac{k(0.024)^x(0.035)^y}{k(0.012)^x(0.035)^y} = \frac{0.10}{0.10}$
 $(2)^x = 1$
 $x = 0$
 $Rate = k[B]^3$, where, k=rate constant

168 (c)

For second order reaction, $\frac{dx}{dt}$ (rate) $\propto [A]^2$ \therefore Rate Of reaction increases four times when concentration of reaction is increased two times. \therefore It is second order reaction.

169 (b)

$$N_2 + 3H_2 \rightleftharpoons 2NH_3$$

$$\frac{d[H_2]}{dt} = -0.3 \times 10^{-4} ms^{-1}$$

$$rate = -\frac{1}{3} \frac{d[H_2]}{dt} = +\frac{1}{2} \frac{d[NH_3]}{dt}$$

$$= \frac{d[NH_3]}{dt} = -\frac{2}{3} \frac{d[H_2]}{dt}$$

$$= -\frac{2}{3} \times (-0.3 \times 10^{-4})$$

$$= 0.2 \times 10^{-4}$$

170 (d)

According to collision theory,

1. The reaction rate depends on collision frequency and effective collisions. For a molecule to have effective collision it should fulfill two conditions; proper orientation and sufficient energy.

2. The collision rate i.e., the number of collisions taking place in unit volume is also termed as collision frequency (Z) and is given by

$$z = \frac{\pi n^2 \sigma^2 u_{av}}{\sqrt{2}}$$

3. Greater the temperature, greater will be the collision rate.

171 (d)

 $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g) + 22 \text{ kcal.}$

:The activation energy for the forward reaction = 50 kcal

: The activation energy for the backward reaction=50+22=72 kcal.

172 (d)

Only those collisions are effective collisions which are energetic enough and cross over the threshold 183 (c) energy level.

173 **(b)**

$$k = \frac{0.693}{t_{1/2}} = \frac{0.693}{480} \text{ s}^{-1}$$

$$k = 1.44 \times 10^{-3} \,\mathrm{s}^{-1}$$

174 (b)

It is a characteristic of zero order reaction.

175 (a)

Follow review of order of reaction.

176 (a)

Average life is defined as, "reciprocal of decay constant." If decay constant for a reaction is λ

Average life= $\frac{1}{2}$

177 (d)

[variation in the concentration V_s time plot for a zero order reaction]

178 (a)

Energy of activation does not depend on the stoichiometry of change. It is characteristic value for a chemical reaction.

179 (d)

Use; $r = K[A]^m[B]^n$

180 (a)

Slow reaction rate indicates higher free energy of activation

181 (a)

It is the definition of molecularity.

182 (c)

$$\left(\frac{dx}{dt}\right) = \frac{k}{V^3} (n_{No})^2 (n_{O_2})$$

$$\left(\frac{dx}{dt}\right) = \frac{k(n_{No})^2 (n_{O_2})}{\left(\frac{v}{2}\right)^3}$$

$$= 8\left(\frac{dx}{dt}\right)$$

No doubt order cannot be predicted by merely looking chemical reaction but this can be treated as standard example of II order reaction.

184 (a)

Rate =
$$-\left[\frac{dc}{dt}\right] = \left[-\frac{dn}{dt}\right]\frac{1}{V}$$
 $\left[\because c = \frac{n}{V}\right]$
 $\therefore -\left[\frac{dc}{dt}\right] = -\frac{1}{RT}\left[\frac{dP}{dt}\right].$ $\left[c = \frac{P}{RT}\right]$

185 (a)

For zero order reaction

Rate =
$$[A]^0 = k$$

 $\frac{mol \ L^{-1}}{s} = k$

 $K = mol L^{-1} s^{-1}$

186 (b)

$$A \xrightarrow{k_1} B,$$

$$A \xrightarrow{k_2} C.$$

By Arrhenius equation,

$$R_1 = A'e^{-E_a 1/RT}$$
 and $k_2 = A'e^{-E_a 2/RT}$

(A' is Arrhenius constant) (Since, $E_{a2} = 2E_{a1}$)

$$k_2 = A'e^{-2E_{a'}|RT}$$

$$\frac{k_1}{k_2} = \frac{A'e^{-E_a \mathbf{1}|RT}}{A'e^{-2E_a|RT}} = e^{E_a \mathbf{1}|RT}$$

$$\therefore k_1 = k_2 e^{E_a 1/RT}$$

187 (d)

For the reaction, $2A + B \rightarrow A_2B$

According to rate laws,

$$rate = k[A]^2[B]$$

Where, k=rate constant

188 (d)

This is activation state and orientation concept for mechanism of reactions.

189 (b)

Rate depends upon the slowest step. Hence, from equation

$$0 + 0_3 \rightarrow 20_2$$

 $r = k[0_3][0]$

And from equation $O_3 \rightleftharpoons O_2 + O$

$$K_{\text{eq}} = \frac{[O_2][O]}{[O_3]}$$

$$[O] = \frac{K_{\text{eq}}[O_3]}{[O_2]}$$

$$\therefore r = k[O_3] \frac{K_{\text{eq}}[O_3]}{[O_2]}$$

$$= k'[O_3]^2[O_2]^{-1}$$

190 (a)

Amount of A left in n_1 halves $=\frac{[A_0]}{2^{n_1}}$

Amount of B left in n_2 halves = $\frac{[B_0]}{2^{n_2}}$

Also if $\frac{[A_0]}{2^{n_1}} = \frac{[B_0]}{2^{n_2}}$ when A decays to n_1 halves and B decays to n_2 halves.

$$\begin{array}{l} :: \qquad \qquad [A_0] = 4[B_0] \\ :: \qquad 4 = \frac{2^{n_1}}{2^{n_2}} = (2)^{n_1 - n_2} \\ \text{or} \qquad (n_1 - n_2) = 2 \\ :: \qquad \qquad n_2 \\ = n_1 - 2 \qquad \qquad \dots \text{(i)} \\ \text{Now,} \qquad T = n_1 \times t_{1/2A} \text{ and } T = n_2 \times t_{1/2B} \\ :: \qquad \frac{n_1 \times t_{1/2A}}{n_2 \times t_{1/2B}} = 1 \\ \text{or} \qquad \frac{n_1 \times 5}{n_2 \times 15} = 1 \\ \text{or} \qquad \frac{n_1}{n_2} \\ = 3 \qquad \qquad \dots \text{(ii)}$$

: By Eqs. (i) and (ii) $n_1 = 3, n_2 = 1$

Thus, $T = 3 \times 5 = 15$ minute

191 (c)

: On doubling the concentration of A, the rate of reaction becomes two times.

- : The order of reaction w.r.t. A is 1
- \because On doubling the concentration of B, the rate of reaction does not change.
- : the order of reaction respect to B is 0
- \because on doubling the concentration of C, the rate of reaction becomes four times
- : the order of reaction w.r.t. C is 2
- ∴ the overall order of reaction=1+0+2=3

192 (c)

For nth order; unit of rate constant may be derived by

$$K = \frac{\text{rate}}{[\text{reactant}]^n}$$

193 (c)

$$r = K[N_2O_5] = 6.2 \times 10^{-4} \times 1.25$$

= 7.75 × 10⁻⁴ M/s

194 (c)

$$A \rightarrow product$$

Initially a

After time t (a-x) x After $t_{1/4}$ $\left(a - \frac{a}{4}\right)$ $\frac{a}{4}$

For the first order kinetics,

$$k = \frac{2.303}{t} \log\left(\frac{a}{a-x}\right)$$
$$k = \frac{2.303}{t} \log \frac{a}{a}$$

$$k = \frac{t}{2.303} \log \frac{a}{\frac{3a}{4}}$$

$$t_{1/4} = \frac{2.303 \log \frac{4}{3}}{k}$$
$$= \frac{0.29}{k}$$

195 (a)

The order of reaction is zero. Suppose the following reaction take place .

$$A + B \rightarrow product$$

:
$$rate = [A][B]^{-1}$$

$$\therefore$$
 order =1+(-1)=0

196 (d)

Pseudo first order reactions are those reactions which are not truly first order but show first order kinetics under specific conditions. For examples, acidic hydrolysis of an ester and hydrolysis of cane sugar.

197 (d)

The differential rate law for the reaction, $4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(g)$ is

$$\begin{aligned} Rate &= -\frac{1}{4} \frac{d[NH_3]}{dt} = -\frac{1}{5} \frac{d[O_2]}{dt} \\ &= +\frac{1}{4} \frac{d[NO]}{dt} = +\frac{1}{6} \frac{d[H_2O]}{dt} \end{aligned}$$

198 (a)

$$_{79}\text{Au}^{198} \xrightarrow{-B} _{80}\text{Hg}^{198}$$

$$k = \frac{0.693}{t_{1/2}} = \frac{0.693}{65}$$

After 260 hr,

$$k = \frac{2.303}{260} \log \frac{a}{a - x}$$

$$\frac{0.693}{65} = \frac{2.303}{260} \log \frac{a}{a - x}$$

$$\frac{a}{a-x} = 16$$

$$\frac{1}{1-x} = 16$$

$$x = \frac{15}{16} \text{ g} = 0.9375 \text{ g}$$

Rate = $k[NO_2Cl]$

Hence ,rate determining step is $NO_2CL \rightarrow NO_2 + CL$

200 (b)

RCl + NaOH → ROH + NaCl

Rate =
$$k[RCl]$$

For this reaction rate of reaction is depends upon the concentration of RCl

It means, the rate of reaction is halved by reducing the concentration of RCl by one half

201 (a

$$\log \frac{k_2}{k_1} = \frac{E_a}{2.303 \, R} \times \frac{T_2 - T_1}{T_1 \cdot T_2}$$

$$\log \frac{105}{100} = \frac{E_a}{2.303 \times 8.314} \times \frac{1}{300 \times 301}$$

$$E_a = 36.65 \text{ kJ}$$

202 (d)

Molecularity of reaction is simply the number of molecules reacting in balanced chemical equation. It can be simply determined by examining balanced equation.

203 (b)

Time required to complete a definite fraction is independent of initial concentration.

204 (b)

For this reaction

$$2A + B_2 \rightleftharpoons 2AB$$

$$k = \frac{[AB]^2}{[A]^2[B_2]}$$

For this reaction,

$$A + B_2 \rightleftharpoons AB + B$$

$$k_1 = \frac{[AB][B]}{[A][B_2]}$$

For this reaction,

$$A + B \rightleftharpoons AB$$

$$k_{2} = \frac{[AB]}{[A][B]}$$

$$k_{1} \times k_{2} = \frac{[AB][B]}{[A][B_{2}]} \times \frac{[AB]}{[A][B]}$$

$$= \frac{[AB]^{2}}{[A]^{2}[B_{2}]}$$

205 (d)

 $k_1 \times k_2 = k$

The collision frequency (Z) and rate contant(k) increase on increase of temperature. With the increase in temperature, the average kinetic energy of the molecules increases and this leads to an increase in number of collisions per unit time (Z). The rate constant(k) of a reaction is also increases with increase of temperature.

206 (c)

For first order reaction,

$$k = \frac{2.303}{t_{1/2}} \log \frac{a}{\left(a - \frac{a}{2}\right)} = \frac{2.303}{t} \log \frac{a}{(a - x)}$$
$$\frac{2.303}{t_{1/2}} \log 2 = \frac{2.303}{1} \log \frac{a}{a/4}$$

$$\frac{2.303 \times 0.3010}{t_{1/2}} = 2.303 \times \log 4$$

$$t_{1/2} = \frac{0.3010}{\log 4} = \frac{0.3010}{0.6020} = \frac{1}{2}h$$

207 (b)

In the given graph,

$$E_a = E_a^{\prime\prime} + \Delta H$$

where, $E_a^{"}$ =activation energy of reverse reaction

$$150 = E_a'' + 100$$

$$E_a^{"} = 50 \text{ kJ}$$

209 (a)

$$\begin{split} T_{50} &= 15 \, min \\ k &= \frac{2.303 log 2}{T_{50}} = \frac{2.303 log 2}{15} \end{split}$$

a = 0.1M

$$(a-x) = 0.025 M$$

For first order reaction,

$$k = \frac{2.303log2}{T_{50}} \log \left(\frac{a}{a-x}\right)$$

$$\frac{2.303log2}{15} = \frac{2 \times 2.303log2}{t} \log \frac{0.1}{0.025}$$

$$= \frac{2.303}{t} log4$$

$$\therefore \frac{2.303log2}{15} = \frac{2 \times 2.303log2}{t}$$

$$\therefore t = 30 min$$

210 (a)

The slowest step is the rate determining step. Formation of B(i.e., step I) is the slowest step, therefore step I is the rate determining step.

For a reaction E_a for forward reaction = E_a for backward reaction $+\Delta H$,

:.
$$85 = A - 20$$

or $A = 105 \text{ kJ mol}^{-1}$.

212 (a) $\frac{-d[N_2]}{dt} = \frac{1}{2} \frac{d[NH_3]}{dt}$

 $10 \text{ g} \rightarrow 5 \text{ g} \rightarrow 2.5 \text{ g} \rightarrow 1.25 \text{ g}$ takes 30 min in each step, ie, $t^{1/2}$ is independent of a' hence, it is a first order reaction

214 (b)

$$B + 5D \to 3A + 2C$$

$$-\frac{d[B]}{dt} = -\frac{1}{5}\frac{d[D]}{dt} = +\frac{1}{3}\frac{d[A]}{dt} = +\frac{1}{2}\frac{d[C]}{dt}$$

215 (b)

$$r = K[A]^m;$$

Also, $100r = K[10A]^m$;

$$\frac{1}{100} = \left(\frac{1}{10}\right)^m;$$

$$\therefore m = 2$$

216 (d)

$$4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(g)$$

$$Rate = -\frac{1}{4}\frac{d[NH_3]}{dt} = -\frac{1}{5}\frac{d[O_2]}{dt} = +\frac{1}{4}\frac{d[NO]}{dt}$$

$$= +\frac{1}{6}\frac{d[H_2O]}{dt}$$

217 (b)

$$r = k[A]^{\alpha} = ka^{\alpha}$$

$$1.837 r = k(1.5a)^{\alpha}$$

Dividing, $1.837 = (1.5)^{\alpha}$

$$\alpha = 1.5$$

Hence, order of reaction = 1.5

218 (b)

 $Cl_2 + 2l^- \rightarrow I_2 + 2Cl^-$

Rate of formation of

$$I_2 = \frac{dI_2}{dt} = -\frac{1}{2}\frac{dI^-}{dt}$$

$$= \frac{1}{2} \times \frac{0.20 - 0.18}{20}$$

$$= \frac{1}{2} \times \frac{0.02}{20}$$

$$= 5 \times 10^{-4} \text{mol } L^{-1} \text{min}^{-1}$$

219 (d)

$$A_2 + B_2 \rightleftharpoons 2AB$$

 E_a (forward)= 180 kJ mol⁻¹
 E_a (backward)= 200 kJ mol⁻¹
In the presence of catalyst
 E_a (forward)=180-100=80 kJ mol⁻¹
 E_a (backward)=200-100=100 kJ mol⁻¹
 $\Delta H = E_a$ (forward) $- E_a$ (backward)
= 80 $-$ 100

220 (d)

 $= -20 \text{ kJ mol}^-$

Increase in pressure or concentration brings in an increase in collision frequency as well as increase in effective collision. Recall that energy of activation is not at all related with exothermic or endothermic nature.

221 (c)

 $\frac{K_{t+10}}{\nu}$ = 2,3 *i. e.*, temperature coefficient is the ratio of rate constant at two temperatures differing by 10°C, preferably at 35°C and 25°C.

222 (b)

Negative sign indicates for the decrease in concentration with time.

223 (a)

For first order reaction

$$k = \frac{2.303}{t} log \frac{[A_0]}{[A]}$$

$$k = \frac{2.303}{45} log \frac{0.05}{0.035}$$

$$k = \frac{2.303}{45} log 1.42$$

$$k = \frac{2.303 \times 0.1523}{45} = 0.0078$$

$$t_{1/2} = \frac{0.693}{0.0078} = 88 min$$

 $r = K[A]^n$ where n is order of reaction when $V_F =$

then
$$\frac{1}{2}r = K \left[\frac{A}{V}\right]^n$$

$$\therefore \qquad 2 = 2^n \text{ or } n = 1$$

225 **(a)**

$$\frac{-d[N_2O_5]}{dt} = \frac{1}{2} \frac{d[NO_2]}{dt} = \frac{2d[O_2]}{dt}$$

$$\therefore K_1[N_2O_5] = \frac{K_2}{2}[N_2O_5] = 2K_3[N_2O_5]$$

Arrhenius equation gives relation of rate constant with temperature.

$$k = A.e^{-E_{\alpha}/RT}$$

On taking logarithm, we get

$$\ln k = \ln A - \frac{E_a}{RT} \ln e$$
or $\ln k = \ln A - \frac{E_a}{RT}$

227 (d)

$$k_{27^{\circ}\text{C}} = \frac{0.693}{30} \text{ min}^{-1},$$

$$k_{47^{\circ}\text{C}} = \frac{0.693}{10} \text{ min}^{-1}$$

$$k_{47^{\circ}\text{C}}/k_{27^{\circ}\text{C}} = 3$$

$$\operatorname{Or} \log \frac{k_{47^{\circ}C}}{k_{27^{\circ}C}} = \log 3$$

We know that

$$\log \frac{k_2}{k_1} = \frac{E_a}{2.303 \, R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$$

So,
$$E_a = \frac{\log 3 \times 2.303 R \times T_1 T_2}{T_2 - T_1}$$

$$=\frac{0.4771\times2.303\times8.314\times300\times320}{20}$$

$$= 43.84 \text{ kJ}$$

228 (c)

Increase in the concentration of the reactants leads to the change in collision frequency because greater the concentration, greater is the collision frequency

229 (d)

Arrhenius equation is:

$$k = Ae^{-E_a/RT}$$

$$\ln k = \ln A - \frac{E_a}{RT}$$

$$\ln k = \ln A - \frac{E_a}{RT}$$

Slope =
$$-\frac{E_a}{R}$$

230 (b)

Given,
$$k_1 10^{10} e^{-20,000/T}$$

 $k_2 = 10^{12} e^{-24,606/T}$
 $k_1 = k_2$

$$k_1 = k_2$$

$$10^{10}e^{-20,000/T} = 10^{12}e^{-24,606/T}$$

$$e^{\frac{-20,000}{T} + \frac{24,606}{T}} = 10^2$$

$$e^{\frac{4,606}{T}} = 10^2$$

On taking log both sides,

$$\frac{4606}{2.303T} = \log 10^2$$

$$2\log 10 \times T = \frac{4606}{2.303}$$

$$T = \frac{4606}{2.303 \times 2}$$
$$= \frac{4606}{4.606} = 1000 \text{ k}$$

231 (b)

The change in molarity $=\frac{n}{V}=\frac{\Delta P}{RT}=\frac{0.8}{0.0821\times273}=$

∴ rate of reaction = change in molarity per sec $= \frac{0.0327}{50 \times 60} = 1.09 \times 10^{-5} \text{ mol litre}^{-1} \text{sec}^{-1}$

233 (d)

The rate of reaction varies with time as well as with concentration and pressure.

234 (d)

For a first order reaction,

$$rate = k[reactant]$$

$$[reactant] = \frac{rate}{k}$$

[reactant] =
$$\frac{\text{rate}}{k}$$

= $\frac{2.40 \times 10^{-5}}{3.0 \times 10^{-5}} = 0.8$

235 (b)

For first order reaction,

$$k = \frac{2.303}{t} log \frac{a}{a - x}$$

$$k_1 = \frac{2.303}{10} log \frac{33.05}{33.05 - 6.25}$$

$$= 2 \times 10^{-3} min^{-1}$$

Constant values of k calculated for different times, shows first order reaction.

236 (a)

For I order reaction:

$$[A]_t = [A]_0 \times e^{-Kt}$$
$$= [A]_0 e^{-K \times \frac{1}{K}} = \frac{[A]_0}{e^{-K}}$$

Comparing the slope and intercept of the given equation with the following Arrhenius equation:

$$\log k = -\frac{E_a}{2.303RT} + \log A$$

Hence, $\log A = 6 i.e.$, $A = 10^6 s^{-1}$

Comparing slope gives $E_a = 38.3 \text{ kJ/mol}$

The factor $-E_a/RT$ is Boltzmann factor and A is frequency factor.

239 (d)

Ionic reactions are instantaneous.

240 (c)

$$2NO \rightarrow N_2 + O_2$$

Rate
$$=k[NO]^2$$

Hence, order of reaction is 2

$$H_2 + I_2 \rightarrow 2HI$$

Rate
$$=k[H_2][I_2]$$

Hence, order of reaction is (1+1)=2

Therefore these reactions are most likely to be elementary reaction that occurs in one step.

241 (d)

 $aG + bH \rightarrow Products$

Suppose order of reaction =n

When concentration of both G and H doubled then rate increases by eight times.

 $rate = k(reactants)^n$

$$(8) = k(2)^n$$

$$(2)^3 = k(2)^n$$

When concentration of G is doubled keeping the concentration of H fixed, the rate is doubled.

$$Rate = [G]^1$$

then,

 $Rate = [G]^1[H]^2$

242 (b)

For a zero order reaction

$$A \rightarrow B$$

$$\frac{-d[A]}{dt} = k$$

$$\operatorname{Or} - \int_{C_0}^{C_t} d[A] = k \int_{t=0}^{t=0} dt$$

$$(C_0 - C_t) = kt$$

Or
$$k = (C_0 - C_t)/t$$

243 (d)

$$t_{99.9\%} = \frac{2.303}{k} \log \frac{a}{a - 99.9a}$$

$$t_{50\%} = \frac{0.693}{k}$$

(b)
$$k = \frac{1}{t} \ln \frac{100}{100 - 99.9} = \frac{1}{t} \ln \frac{100}{0.1}$$

Or
$$\frac{\ln 2}{t_{1/2}} = \frac{1}{t} \ln 10^3$$

Or
$$\frac{\log 2}{t_{1/2}} = \frac{1}{t} \log 10^3 = 3/t$$

$$t_{1/2} = \frac{\log 2}{3} \times t$$

$$t = 10t_{1/2}$$

245 (a)

Rate constant $k = 1.155 \times 10^{-3} s^{-1}$

$$k = \frac{2.303}{t} log \frac{a}{(a-x)}$$
 : $a = a, (a-x) = \frac{a}{2}$

$$t_{1/2} = \frac{2.303}{t} \log \frac{a}{a/2}$$

$$= \frac{2.303}{1.155 \times 10^{-3}} log 2$$
$$= \frac{2.303}{1.155 \times 10^{-3}} \times 0.3010$$

$$=\frac{2.303}{1.155\times10^{-3}}\times0.3010$$

$$=\frac{0.693\times10^3}{1.155}=600\ s$$

$$t_{1/2} = \frac{0.693}{k} = \frac{0.693}{1.155 \times 10^{-3}}$$

246 (c)

For the reaction

$$A + 2B \rightarrow C$$

Rate of reaction at a given instant can be

rate =
$$-\frac{d[A]}{dt}$$
 = $-\frac{1}{2}\frac{d[B]}{dt}$ = $+\frac{d[C]}{dt}$

247 (d)

VSEPR theory is for bonding concept.

248 (c)

$$A \rightarrow B$$

$$\frac{dx}{dt} = k[A]^n$$

$$\frac{dx'}{dt} = k[4A]^n$$

$$\frac{dx'/dt}{dx/dt} = \left(\frac{4}{1}\right)^n$$

$$2 = \left(\frac{4}{1}\right)^n$$

$$n=\frac{1}{2}$$

249 (c)

Rate
$$\lim \frac{dx}{dt} = k[A]^{1}[B]^{2}[C]^{0} = k[A]^{1}[B]^{2}$$

Hence, order of reaction = 1 + 2 = 3

250 (b)

A graph between the log concentration (log c) of reactant and time t for the first order reaction gives a straight line, whose slope is equal to

$$\log_{10} C_A = -\frac{kt}{2.303} + \log_{10} (C_A)_0$$

Hence, the order of the above reaction is one.

251 (a)

$$2FeCl_3 + SnCl_2 \rightarrow 2FeCl_2 + SnCl_4$$

It is a third order reaction. As the concentration of both FeCl₃ and SnCl₂ affect the rate of reaction

$$\therefore Rate = k[FeCl_3]^2[SnCl_2]$$

Hence, order of reaction = 2 + 1 = 3

252 (a)

The order of this reaction over water is zero and in general case it is two. This is an experimental fact.

253 (a)

Rate = $K[sugar][H_2O]^\circ$.

$$\frac{1}{2} \frac{d[NH_3]}{dt} = -\frac{1}{3} \frac{d[H_2]}{dt}$$

$$\therefore -\frac{d[H_2]}{dt} = \frac{3}{2} \times \frac{d[NH_3]}{dt} = \frac{3}{2} \times 2 \times 10^{-4}$$

$$= 3 \times 10^{-4}$$

255 **(b**

$$-\frac{d[N_2O_5]}{dt} = \frac{1}{2}\frac{d[NO_2]}{dt} = \frac{2d[O_2]}{dt}$$

Rate constant is characteristic constant of a reaction and depends only on temperature and catalyst.

257 (c)

Unit of A depends on unit of k.

258 (a)

Oppositely charged ions are attracted instantaneously to show reaction.

259 (b)

for first order reaction,

$$\begin{split} t &= \frac{2.303}{k} log \frac{[A]_0}{[A]} \\ k &= \frac{2.303}{1.386 \times 60 \times 60} log \frac{100}{25} \\ k &= \frac{2.303 \times 0.6021}{1.386 \times 60 \times 60} = 2.8 \times 10^{-4} s^{-1} \end{split}$$

260 (b)

Molarity =
$$\frac{\text{Mole of solute}}{\text{Volume of solution in litre}}$$
; Also $a = b \times c_m$

261 (d)

We know that if temperature is increased 10° C then velocity increases 2 times.

$$\frac{r_1+10}{r_1}=2$$

Because temperature increases 100°C hence, rate of reaction will increase 2¹⁰ times or 1024 times.

262 (b)

$$\frac{-d[A]}{dt} = -\frac{1}{2}\frac{d[B]}{dt} = \frac{1}{3}\frac{d[C]}{dt} = \frac{d[D]}{dt}$$
$$\frac{d[C]}{dt} = -\frac{3}{2}\frac{d[B]}{dt} = -\frac{3d[A]}{dt} = \frac{3d[D]}{dt}$$

263 **(b**)

We know,
$$\frac{t_1}{t_2} = \left[\frac{a_2}{a_1}\right]^{n-1}$$

Where, t_1 and t_2 are the half-life periods when the initial concentration are a_1 and a_2

According to question

$$t_1 = 0.1s, a_1 = 200$$

 $t_2 = 0.4s, a_2 = 50$

On substitution the values

$$\frac{0.1}{0.4} = \left[\frac{50}{200}\right]^{(n-1)}$$

On taking log on both sides

$$\log \frac{0.1}{0.4} = (n-1)\log \frac{50}{200}$$

$$0.60 = (n-1) \times 0.60$$

$$(n-1) = \frac{0.60}{0.60} = 1$$

$$n - 1 = 1$$

$$n = 1 + 1 = 2$$

$$A \rightarrow product$$

$$-\frac{d[A]}{dt} = k_1[A]^0$$

Units of $k_1 = Ms^{-1}$

 $B \rightarrow product$

$$-\frac{d[B]}{dt} = k_2[B]$$

Units of $k_2 = s^{-1}$

265 (d)

Choice (c) is an exceptional case. The rate of reaction always increases with increase in temperature.

266 (d)

Slowest step is rate determining step, thus, in case (A), rate law is given as rate = $k[Cl_2][H_2S]$

While for the reaction given in case (B), rate law is given as rate= $k[H_2S][Cl_2][H^+]^{-1}$

Hence, only mechanism (A) is consistent with give rate law.

267 (b)

Rate of reaction

$$= \frac{1}{2} \left[\frac{-d[A]}{dt} \right] = \frac{1}{2} \left[\frac{0.5 - 0.4}{10} \right]$$

 $= 0.005 \text{ mol litre}^{-1} \text{min}^{-1}$.

268 (a)

For 2/3 of a reaction

$$[A]_0 = a, [A] = a - \frac{2}{3} a = \frac{a}{3}$$

$$\therefore t_{2/3} = \frac{2.303}{k} \log \frac{[A]_0}{[A]}$$

$$=\frac{2.303}{5.48\times10^{-14}}\log\frac{a}{a/3}$$

$$= \frac{2.303}{5.48 \times 10^{-14}} \log 3$$

$$t_{2/3} = 2.01 \times 10^{13} \text{ s}$$

269 (c)

First calculate number of half-lives with

$$C_n = \frac{C_0}{2^n}$$

$$t_{1/2}$$
 as $t_{1/2} =$

 $\frac{total\ time\ taken}{number\ of\ half-lives}\ afterwards$

$$t_{1/2} = \frac{0.693}{k}$$

$$50 = \frac{800}{2^n}$$

$$2^n = \frac{800}{50} = 16 = 2^4$$

$$n = 4$$

$$T = n \times t_{1/2}$$

$$n = 4$$

$$T = n \times t_{1/2}$$

$$t_{1/2} = \frac{2 \times 10^4}{4} = 0.5 \times 10^4 \text{ s}$$

$$k = \frac{0.693}{0.5 \times 10^4} = 1.386 \times 10^{-4}$$

$$k = \frac{0.693}{0.5 \times 10^4} = 1.386 \times 10^{-4}$$

270 (c)

Given N_0 =initial concentration =1

N=concentration after time
$$t=\frac{1}{9}$$

$$K=6.9 \times 10^{-3} s^{-1}$$

$$N = N_0 \left(\frac{1}{2}\right)^n$$

$$\frac{1}{8} = 1 \left(\frac{1}{2}\right)^n$$

$$\therefore n = 3$$

$$t_{1/2} = \frac{0.693}{k} = \frac{0.693}{6.9 \times 10^{-3}} = 100s$$

$$T=n \times t_{1/2}$$

$$=3 \times 100$$

$$=300s$$

: after 300s it will be reduced to 1/8 of original concentration.

271 (c)

Order of reaction is sum of powers raised on concentration terms in order to write rate expression.

272 (c)

In Haber's process, ammonia is synthesized as

$$N_2 + 3H_2 \frac{\text{Fe,Mo,300°C}}{\text{High Pressure}} \rightarrow 2NH_3$$

Rate of synthesis of ammonia= $\frac{60}{60}$

: Rate of disappearance of nitrogen, i.e.,

$$\frac{-d[N_2]}{dt} = \frac{1}{2} \frac{d[NH_3]}{dt}$$

$$=\frac{1}{2}\times=0.5 \ mol/min$$

273 (c)

$$t_{1/2} \propto \frac{1}{(a)^{n-1}}$$

For second order reaction, n = 2

$$\therefore t_{1/2} \propto \frac{1}{a}$$

274 (a)
For I order:
$$(t_{1/2})_1 = \frac{0.693}{K_1}$$

For zero order :
$$\left(t_{1/2}\right)_0 = \frac{a}{2K_0}$$

$$\therefore \frac{K_1}{K_0} \times \frac{1.386}{2 \times 0.693} = \frac{\left(t_{1/2}\right)_0}{\left(t_{1/2}\right)_1}$$

$$\frac{K_1}{K_0} = \frac{20 \times 2 \times 0.693}{40 \times 1.386} = 0.5 \text{ mol}^{-1} \text{litre}$$

On increasing the temperature the kinetic energy of the reacting molecules increases and hence, number of collisions increases. So, the rate of reaction will also be increased.

276 (b)

For I order reaction,

$$\log(a - x) = \log a - \frac{Kt}{2.303}$$

$$y = c + mx$$

277 (d)

The half-life period of a first order reaction is independent of the initial concentration of the

$$t_{1/2} = \frac{0.693}{k}$$

$$\frac{r_{(t+10)}}{r_t} = 2 \text{ for each } 10^{\circ} \text{ rise in temperature}$$

$$\therefore \frac{r_{100}}{r_{10}} = (2)^9 = 512 \text{ times}$$

279 (c)

For zero order reaction,

$$[A] = -kt + [A]0$$

Where, [A]0= initial concentration=a

[A]=remaining concentration= a - a = 0

On putting value of $[A]_0$ and [A], we get

$$t = \frac{a}{k}$$

 $2N_2O_5 \rightleftharpoons 2N_2O_4 + O_2$ Bimolecular but of first order.

281 (a)

For first order reaction:

$$t = \frac{2.303}{k} \log \frac{a}{a - x}$$

$$a = 100, x = 50, t = 120 \min$$

$$k = \frac{2.303}{120} \log \frac{100}{100 - 50}$$
$$= \frac{2.303}{120} \log 2$$

$$k = \frac{2.303 \times 0.3010}{120}$$

$$k = 0.0057 \,\mathrm{min}^{-1}$$

For the IInd case:

$$t = \frac{2.303}{0.0057} \log \frac{100}{100 - 90}$$
$$= \frac{2.303}{0.0057} \log 10$$
$$t = 404 \min$$
$$\approx 400 \min$$

282 (a)

Order of reaction may be fractional.

283 (a)

Difference in threshold energy barrier gives different values of energy of activation.

Also $K = Ae^{-E_a/RT}$ and rate $= K[reactant]^n$

284 (d)

Order of reaction is sum of powers raised on concentration terms in order to write rate expression.

285 **(b)**

Let,
$$r = K[A]^m[B]^n$$

 $r_1 = K[A]^m[2B]^n$
 $r_2 = K[2A]^m[2B]^n$
Also, $\frac{r_1}{r} = 2$ and $\frac{r_2}{r} = 8$ (Given)

Also,
$$\frac{r_1}{r} = 2$$
 and $\frac{r_2}{r} = 8$ (Given)

Therefore
$$m = 2$$
 and $n = 1$

$$r = K[A]^2[B]^1$$

286 (d)

The higher threshold energy barrier prevents coal to burn spontaneously and provides kinetic stability to fuel.

287 (b)

$$[H^{+}] = \frac{6 \times 10^{-7} \text{ mol}}{5 \times 10^{-5} \text{ L}} = 1.2 \times 10^{-2} \text{M}$$

$$\text{rate} = \frac{dx}{dt} \text{ or } dt = \frac{dx}{\text{rate}} = \frac{1.2 \times 10^{-2} \text{M}}{6 \times 10^{5} \text{ M/s}}$$

$$= 2 \times 10^{-8} \text{ s}$$

289 (b)

$$2NO_2 \stackrel{k_1}{\rightleftharpoons} N_2O_4$$

Rate =
$$-\frac{1}{2} \frac{d[\text{NO}_2]}{dt}$$

= $k_1[\text{NO}_2]^2 - k_2[\text{N}_2\text{O}_4]$

: Rate of disappearance of NO₂

$$ie, -\frac{d[NO_2]}{dt} = 2k_1[NO_2]^2 - 2k_2[N_2O_4]$$

$$N_2 + 3H_2 \rightleftharpoons 2NH_3$$

 $\frac{d[H_2]}{dt} = -0.3 \times 10^{-4} \text{ Ms}^{-1}$

Rate =
$$-\frac{1}{3}\frac{d[H_2]}{dt} = +\frac{1}{2}\frac{d[NH_3]}{dt}$$

$$=\frac{d[\mathrm{NH}_3]}{dt} = -\frac{2}{3}\frac{d[\mathrm{H}_2]}{dt}$$

$$= -\frac{2}{3} \times (-0.3 \times 10^{-4})$$
$$= 0.2 \times 10^{-4} \,\mathrm{Ms}^{-1}$$

For the given reaction,

$$\frac{-d[A]}{dt} = -\frac{1}{2}\frac{d[B]}{dt} = \frac{1}{3}\frac{d[C]}{dt} = \frac{d[D]}{dt}$$

292 (c

The order of reaction with respect to a reacting compound Y, is zero. It means rate of reaction is independent of its concentration.

293 (d)

Rate of formation of SO_3 = rate of disappearance of SO₂

=
$$1.28 \times 10^{-3}$$
g/sec = $\frac{1.28 \times 10^{-3}}{64}$ M/sec
= $\frac{1.28 \times 10^{-3}}{64} \times 80$ g/sec
= 1.60×10^{-3} g/sec

294 (c)

$$N = N_0 \times \left(\frac{1}{2}\right)^n$$

$$\frac{1}{8}N_0 = N_0 \times \left(\frac{1}{2}\right)^n$$

$$N=3$$

$$T = n \times t_{1/2}$$

$$=3 \times 14 = 42s$$

295 (d)

$$\log_e K = \log_4 A - \frac{E_a}{RT}$$
; (Arrhenius eq.)

If
$$T \to \infty$$
, then $\log_e K = \log_e A$

For first order reaction, rate=k[concentration] $k = 3 \times 10^{-6}$ per second, concentration=0.1M Rate= $3 \times 10^{-6} \times 0.1$ $= 3 \times 10^{-7} ms^{-1}$

297 (c)

i.e.,
$$E_{a_{(b)}} > E_{a_{(f)}}$$

298 (c)

Rate =
$$k[A]$$

$$\therefore k = \frac{10^{-2}}{0.2} = 5 \times 10^{-2}$$

Now,
$$t_{1/2} = \frac{0.693}{k} = \frac{0.693}{5 \times 10^{-2}} = 13.86 \text{ min}$$

299 (a)

$$\log K = \log A - \frac{E_a}{RT}$$
2.9 = \log A - \frac{E_a}{2.303R \times 769} \ldots (i)

L1 =
$$\log A = \frac{E_a}{2.303R \times 667}$$
 ... (ii)

Eqs. (i) - (ii)

$$1.8 = \frac{E_a}{R} \left[\frac{1}{667} - \frac{1}{769} \right]$$

$$1.8 = \frac{E_a}{R} \frac{[769 - 667]}{667 \times 769 \times 2.303}$$

$$E_a = 4.17 \times 10^4 \text{ cal/mol.}$$

300 (c)

$$r = K[P]^{2}[Q]$$

$$r_{1} = K[2P]^{2}[Q]$$

$$\therefore \frac{r_{1}}{r} = 4$$

301 (a)

In the presence of acid, hydrolysis of ethyl acetate is a pseudo-unimolecular reaction but the actual value of k depends upon the concentration of H+ ion. As H2SO4 is stronger acid than HCl and moreover H+ ions produced from 0.05 M H2SO4 is double than 0.05 M HCl therefore, $k_1 < k_2$

304 (c)

$$-\frac{d[X]}{dt} = -\frac{1}{2}\frac{d[Y]}{dt} = \frac{d[P]}{dt}$$

305 (b)

For first order reaction $t_{1/2} \propto [a]^{\circ}$.

306 (c)

$$t_{50\%} = \frac{0.693}{k} = \frac{0.693}{100} \text{ s}$$

$$= 0.693 \times 10^{-3} \text{ s}$$

≈ 7 milli second

308 (b)

For exothermic reaction $E_a \ge \Delta E$. However, rest all are true.

We have

$$E_{a(f)} = E_{\text{Threshold}} - E_{\text{Reactant}}$$

$$E_{a_{(b)}} = E_{\text{Threshold}} - E_{\text{Product}}$$

Thus,
$$E_{a_{(f)}} - E_{a_{(b)}} = E_{Product} - E_{Reaction} = \Delta E$$

If,
$$\Delta E = -\text{ve then } E_{a_{(f)}} < E_{(b)}$$

If,
$$\Delta E = +\text{ve then } E_{a_{(b)}} > E_{(f)}$$

309 (b)

Rate constant is characteristic of a reaction.

310 (b)

For a first order reaction, Arrhenius equation is given as

$$k = A.e^{-E_{\alpha}/RT}$$

where, E_a =energy of activation

$$\frac{k_2}{k_1} = \frac{e^{-E_a/RT_1}}{e^{-E_a/RT_2}} \\
= e^{E_a/RT_2 - E_a/RT_1} \\
= e^{\frac{E_a}{R}} \left(\frac{1}{T_2} - \frac{1}{T_1}\right) \\
= e^{\frac{E_a}{R}} \left(\frac{T_2 - T_1}{T_1 T_2}\right)$$

Taking log on both the sides, we get

$$\begin{split} &\log\frac{k_2}{k_1} = \log e^{\frac{Ea}{R}} \left(\frac{T_2 - T_1}{T_1 T_2} \right) \\ &= \frac{E_a}{2.303R} \left(\frac{T_2 - T_1}{T_1 T_2} \right) \end{split}$$

311 (a)

24 g of Na has 6.02×10^{23} atoms

$$2 \times 10^{-4}$$
 g of Na will have $= \frac{6.02 \times 10^{23}}{24} \times 2 \times 10^{-4}$ atoms

$$= 0.502 \times 10^{19}$$
 atoms

$$k = \frac{\text{disintegration (in atom s}^{-1})}{\text{no. of atoms present}}$$

$$=\frac{7.0\times10^{12}}{0.502\times10^{19}}$$

$$= 13.94 \times 10^{-7} \text{ s}^{-1}$$

Therefore,
$$t_{1/2} = \frac{0.693}{13.94 \times 10^{-7}} = 4.97 \times 10^5 \text{ s}$$

312 (d)

$$k = \frac{2.303}{t} log \frac{A_0}{A}$$
$$= \frac{2.303}{t} log \frac{0.1}{0.005}$$
$$= \frac{2.303}{t} log 20 = 0.075$$

Rate of reaction when concentration of X is 0.01 M will be

$$0.075 \times 0.01 = 7.5 \times 10^{-4} \text{min}^{-1}$$

313 (c)

For a zero order reaction

$$A \rightarrow \text{product}$$

Rate =
$$\frac{-d[A]}{dt} = k[A]^0 = k$$

$$-d[A] = k \cdot dt$$

Integrating the above equation

$$-\int d[A] = k \int dt$$

$$-[A] = kt + \theta \qquad \dots (i)$$

At
$$t = 0$$
, $A[A]_0$

$$-[A]_0 = k \times 0 + \theta$$

$$\theta = -[A]_0$$

$$\therefore -[A] = kt - [A]_0$$

Or
$$[A] = -kt + [A]_0$$

314 (c)

$$2A + B \rightarrow C$$

Rate=k[A][B]

It represents second order reaction.

Thus, unit of k is $M^{-1}S^{-1}$

∴ (a) is false

 T_{50} is dependent of concentration but not constant

$$-\frac{1}{2}\frac{d[A]}{dt} = \frac{d[C]}{dt}$$

thus (C)is correct

315 **(b)**

For *nth* order reaction the unit of k is expressed as

$$conc.^{(1-n)} time^{-1}$$

Hence, for second order, the unit of rate constant

 $conc.^{(1-2)} time^{-1}$

$$conc.^{-1}$$
 $time^{-1}$

316 (a)

$$t = \frac{2.303}{k} \log \frac{[A]_0}{[A]}$$

$$=\frac{2.303}{60}\log\frac{a}{\frac{a}{4.6}}=\frac{2.303}{60}\log 16$$

$$=\frac{2.303}{60}\times 1.204$$

$$= 0.0462 s$$

$$= 4.6 \times 10^{-2} s$$

317 (b)

The rate constant of reaction depends upon temperature.

318 (c)

If the temperature is increased by 60° C then 10° increase has been made 6 times and therefore, rate will increase by $2^{6} = 64$ times

320 (d)

Rate of reaction depends upon nature of reactants, concentration of the reactants, temperature and presence of catalyst.

321 (a)

No doubt an increase in temperature may increase no. of collisions also but this is the increase in number of effective collisions (with more energy) which decide the rate.

322 (c)

From slow step, rate = $k[B_2][A]$

From 1st equation $k_{eq} = \frac{[A]^2}{[A_2]}$

$$Or\left[A\right] = \sqrt{k_{eq}[A_2]} = k_{eq}^{1/2} A_2^{1/2}$$

Hence, rate = $k[B_2] k_{eq}^{1/2} A_2^{1/2}$ = $k'[A_2]^{1/2} [B_2]$

Hence, order

$$=1\frac{1}{2}$$

323 (a)

According to formula $k = PZe^{-\frac{E_a}{RT}}$ Lowering of E_a (activation energy), raises the value of k.

324 (c)

$$k = Ae^{-\frac{E_a}{RT}}$$

k = rate constant

A = pre-exponential, frequency factor

 E_a =activation energy

R = gas constant

T = temperature

325 (b)

Slowest step of mechanism decides the rate expression,

Thus, rate = $K[NO_2][F_2]$

326 (d)

Net rate of reaction = rate of forward reaction - rate of backward reaction

$$= K_f[reactants] - K_b[Product]$$

Also
$$K_c = \frac{\kappa_f}{\kappa_b}$$
 at equilibrium.

327 (a)

When volume is reduced to one fourth, concentration become four times. Hence, the rate

of reaction becomes 16 times as compared to the initial rate.

328 (c)

We know that,

$$t_{1/2} = \frac{0.693}{k}$$
or $k = \frac{0.693}{t_{1/2}} = \frac{0.693}{480}$

$$= 1.44 \times 10^{-3} s^{-1}$$

329 (d)

Number of collisions of one molecules/unit time=*X*

Number of collision of N molecules/unit time=NX.

As in one collision, two molecules are involved, collision frequency=NX/2.

330 (a)

$$K=2.34s^{-1}$$

Unit of k suggest that the reaction is of 1st order, hence for 1st order reaction,

$$t_{1/2} = \frac{0.693}{k}$$
$$= \frac{0.693}{2.34} = 0.30s$$

331 **(b)**

For zero order reaction integrated rate equation .

is

$$kt = [A]_0 - [A]$$

If
$$[A]_0 = a$$
, $[A] = \frac{a}{2}$, $t = t_{1/2}$

$$kt_{1/2} = a - \frac{a}{2}$$

$$kt_{1/2} = \frac{6}{5}$$

$$t_{1/2} = \frac{a}{2k}$$

$$\therefore t_{1/2} \propto a$$

332 (a)

Arrhenius equation $k = Ae^{-\frac{E}{RT}}$

$$\ln k = \ln A - \frac{E}{RT}$$

$$\log k = \log A - \frac{E}{2.303 \, RT}$$

Hence, *E* is calculated with the help of slope of following.

- 333 **(b)** $k = 2.1 \times 10^{10} \exp(-2700/RT)$ $ie, \log k \text{ vs } 1/T \text{ will be straight line}$ $Intercept of \log k \text{ axis} = \log 2.1 \times 10^{10}$
- 334 **(c)** $\frac{dA}{dt} = k[A]^{2}$ K= reaction rate constant
 Then unit of second order reaction rate constant

$$\begin{split} k &= -\frac{d[A]}{dt} \times \frac{1}{[A]^2} \\ &= \frac{1}{s. \, mol \, L^{-1}} \\ or \, L \, mol^{-1} s^{-1} or \, L \, mol^{-1} t^{-1} \end{split}$$

Given, $R_1 = k[A]^2[B]$ Let concentration of B is changed by x times. Then,

$$R_2 = k[A/2]^2[xB]$$

= $k \times x/4[A]^2[B]$
= $x/4 \times k[A]^2[B]$
As $R_2 = R_1$, thus $x = 4$

- 336 **(b)**The intermediates species is one which is formed and used up during the course of reaction.
- 337 **(d)** Integrated rate expression for 1/2 order is $-2c^{1/2} = Kt 2c_0^{1/2}.$
- 338 (a)

 If the order of reaction w.r.t. A is n and the order of reaction w.r.t. B is m, rate law become Rate $=k[A]^n[B]^m$ From (1) $5 \times 10^{-5} = [0.20]^n[0.30]^m$... (i)

 From (2) $5 \times 10^{-5} = [0.20]^n[0.10]^m$... (ii)

 From (3) $1 \times 10^{-4} = [0.40]^n[0.05]^m$... (iii)

 or $10 \times 10^{-4} = [0.40]^n[0.05]^m$ from eqs.(i) and (ii)

- $\frac{5 \times 10^{-5}}{5 \times 10^{-5}} = \left[\frac{0.20}{0.20}\right]^n \left[\frac{0.30}{0.10}\right]^m$ $1 = (3)^m \Rightarrow (3)^0 = (3)^m \Rightarrow m = 0$ From eqs. (iii) and (iv) $\frac{5 \times 10^{-5}}{5 \times 10^{-5}} = \left[\frac{0.20}{0.40}\right]^n \left[\frac{0.10}{0.05}\right]^m$ $\frac{1}{2} = \left(\frac{1}{2}\right)^n \times \left(\frac{0.10}{0.05}\right)^0$ $\Rightarrow \frac{1}{2} = \left(\frac{1}{2}\right)^n \Rightarrow \left(\frac{1}{2}\right)^1 = \left(\frac{1}{2}\right)^n \Rightarrow n = 1$ Overall order of the reaction = n + m = 1 + 0 = 1
- 339 **(b)**For II order reaction, $t = \frac{1}{K} \frac{x}{a(a-x)}$;
 if x = a/2, $t_{1/2} = \frac{1}{K \cdot a}$.
- 340 (c) $2.303 \log \frac{K_2}{K_1} = \frac{E_a}{R} \left[\frac{T_2 T_1}{T_1 T_2} \right]$ $\therefore 2.303 \log \frac{K_2}{K_1} = \frac{65 \times 10^3}{8.314} \left[\frac{25}{298 \times 273} \right]$ $\therefore \frac{K_2}{K_1} = 11.05$
- 341 **(b)**Arrhenius equation is,
 Rate constant, $k = Ae^{-E_a|RT}$ $k = Ae^{-2.303 RT/RT}$ $\frac{k}{A} = e^{-2.303}$ On solving, we get $\frac{k}{A} = 10^{-1}$
- $\overline{A} = 10^{-1}$ 342 **(d)** $X \to Y$ is an endothermic reaction $\Delta H = +$ ve

 E_b =energy of activation of backward reaction E_f =energy of activation of forward reaction ΔH = heat of reaction Thus, $E_f = E_b + \Delta H$ Thus, $E_f > E_b$

[A]_{left} = [B]_{formed} = $n \times [A]_{decayed}$

$$\begin{aligned} A_0 e^{-\lambda t} &= n \times A_0 [1 - e^{\lambda t}] \\ &\therefore \quad e^{-\lambda t} &= \frac{n}{n+1} \end{aligned}$$

$$\therefore [B]_{\text{formed}} = n \times A_0 \times \left[1 - \frac{n}{n+1}\right] = \frac{nA_0}{n+1}$$

344 (c)

Three molecules are taking part in elementary step.

345 (b)

The rate expression is derived for slowest step of mechanism.

346 (a)

$$t_1 = \frac{\left(t_{1/2}\right)_1}{0.693} \ln\left(\frac{1}{1 - (1/4)}\right)$$

And
$$t_2 = \frac{(t_{1/2})_2}{0.693} \ln \left(\frac{1}{1 - (3/4)} \right)$$

$$\frac{t_1}{t_2} = \frac{8}{1} \times \frac{\ln(4/3)}{\ln 4}$$

$$=\frac{8\times0.125}{0.602}=\frac{0.001}{0.602}$$

= 1: 0.602

348 (b)

For zero order reaction

$$kt = [A]_0 - [A]$$

For
$$t_{1/2}$$
, $[A] = [A]_0/2$

$$\therefore kt_{1/2} = [A]_0 - [A]_0/2$$

$$=\frac{[A]_0}{2}$$

$$t_{1/2} = \frac{[A]_0}{2k}$$

349 (a)

Given, $R = k[A][B]^2$

Where [A]=[2A] and B=[2B]

$$R' = k[2A][2B]^2$$

 $= k[2A]4[B]^2$

 $= 8k[A][B]^2$

R'=8R

Thus, the rate will become eight times

351 (d)

A decrease in E_a will increase rate constant K and thus rate of reaction increases.

352 (a)

The temperature coefficient is the ratio of two velocity constants having the difference of 10°C. Temperature coefficient

 $=\frac{k_t+10}{k}$

For most of the reactions its value lies between 2 and 3

353 (c)

$$k = \frac{0.693}{t_{1/2}} = \frac{0.693}{693} = 0.001 \,\mathrm{s}^{-1}$$

354 **(b)**

$$-\frac{1}{3}\frac{d[H_2]}{dt} = \frac{1}{2}\frac{d[NH_3]}{dt}$$

$$\therefore -\frac{d[H_2]}{dt} = \frac{3}{2} \times \frac{d[NH_3]}{dt}$$

$$= \frac{3}{2} \times \frac{10^{-3} \times 10^3}{17} \text{ mol hr}^{-1}$$

$$= \frac{3}{2} \times \frac{10^{-3} \times 10^3}{17} \times 2 \times 10^{-3} \text{ kg hr}^{-1}$$

$$= 1.76 \times 10^{-4} \text{kg hr}^{-1}$$

355 (a)

For I order reaction,
$$K = \frac{2.303 \log_{10} 2}{t_{1/2}}$$

$$\therefore \qquad t_{1/2} = \frac{0.693}{K} = \frac{\ln 2}{K}$$

356 (b)

For second order reaction

$$r = k[A]^2 \qquad \dots (1)$$

When concentration of A(reactant)is doubled

$$r' = k[2A]^2$$

$$r' = 4k[A]^2$$
 ...(2)

Comparing Eqs.(1) and(2)

r' = 4r

357 (a)

With increase in temperature reaction rate increases due to increase in number of molecules having threshold energy.

358 (c)

The value of first order rate constant expends on the units of the concentration term used is not the correct statement.

359 (c)

Since rate constant = 1.0×10^7 mol litre⁻¹ sec⁻¹

: Zero order reaction.

For zero order $t = \frac{x}{\kappa} =$

rate constant

... (1)

 $: 0.05 \text{ mL has } 3 \times 10^{-6} \text{mole of H}^+$

$$1000 \text{ mL has} \frac{3 \times 10^{-6} \times 10^{3}}{0.05}$$

 $= 0.6 \times 10^{-1}$ mol/litre of H⁺

: By Eq. (i),
$$t = \frac{0.6 \times 10^{-1}}{1 \times 10^7} = 6 \times 10^{-9}$$
 second

360 (c)

$$2A + B \rightarrow \text{products}$$

Rate of reaction, $r_1 = k[A]^2[B]$

If the concentration of A become double then the rate will be

$$r_2 = k[2A]^2[B]$$

$$r_2 = 4k[A]^2[B]$$
$$r_2 = 4r_1$$

361 (c)

From $t_{1/2} \propto C_0^{1-n}$

Where, n =order of reaction

For second order n = 2

$$\therefore t_{1/2} \propto C_0^{1-2}$$

$$t_{1/2} \propto C_0^{-1}$$

362 (b)

10% of the reaction is completed in 20min .Next 20% of the reaction will be completed in next 20min. Hence, 10%+9%=19% of the reaction will be completed in 20+20=40min.

363 (b)

A graph plotted between $\log k$ versus $\frac{1}{T}$ for calculating activation energy is shown as:

From Arrhenius equation

$$\log k = \log A - \frac{E_a}{2.303 \, RT}$$

$$A \rightarrow B + C$$

$$t_{1/2} = \frac{a}{2k} = \frac{1}{2 \times 0.001} = 500 \text{ s}$$

And
$$T = \frac{a}{k} = \frac{1}{0.001} = 1000 \text{ s}$$

365 (c)

$$r \propto [CO]^2$$

$$r^1 \propto [2CO]^2$$

$$r^1 \propto 4[CO]^2$$

Hence,

$$r^1 \propto 4[CO]^2$$

$$r^1 \propto [CO]^2$$

$$r^1 \propto 4r$$

$$2A \rightarrow B + C$$

After 10 min,

$$2p - x + x + x = 300$$
 (given)

$$2p + x = 300$$

$$x = 300 - 200 = 100$$

$$k = \frac{2.303}{10} \log \frac{200}{100} = 0.0693 \,\mathrm{min^{-1}}$$

367 (a)

Arrhenius equation is written as

$$k = Ae^{-E_{\alpha}/RT}$$

Taking logarithm, above equation may be written

$$\ln k = \ln A - \frac{E_a}{R} \times \frac{1}{T}$$

$$\therefore \ln k_1 = \ln A - \frac{E_a}{R} \times \frac{1}{T_c} \qquad \dots (i)$$

$$\ln k_2 = \ln A - \frac{E_a}{R} \times \frac{1}{T_2} \qquad \dots \text{(ii)}$$

Subtracting the Eq. (i) from Eq. (ii)

In
$$k_2$$
 – In $k_1 = \frac{E_a}{R} \left[\frac{1}{T_1} - \frac{1}{T_2} \right]$

$$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left[\frac{1}{T_1} - \frac{1}{T_2} \right]$$

368 (b)

$$c_{12}H_{22}O_{11} + H_2O \xrightarrow{Dil.acid} C_6H_{12}O_6 + C_6 + H_{12}O_6$$

Excess glucose fructose

when one of the reactant is present in large excess, the second order reaction confirms to the first order and is knows as Pseudo-unimolecular reaction

369 (d)

Rate of reaction =
$$-\frac{1}{3}\frac{d[H_2]}{dt} = \frac{d[N_2]}{dt} = \frac{1}{2}\frac{d[NH_3]}{dt}$$

370 (b)

$$r = K[A]^n$$

$$2.4 = K[2.2]^n$$

$$0.6 = K[1.1]^n$$

$$4 = (2)^n \text{ or } n = 2$$

371 (b)

$$\frac{dx}{dt} = k[A]^2$$

$$k = \frac{dx}{dt[A]^2}$$

$$mol(L)^2$$

$$= \frac{1}{L \times s \times (mol)^2}$$

mot Ls

372 (a)

A→ product (first order reaction)

For first order reaction,

Rate constant (k)= $\frac{2.303}{t}log_{10}\frac{[A]_0}{[A]_t}$

At t= 40min,

$$= \frac{2.303}{40} log_{10} \frac{0.1}{0.025} = \frac{2.303}{40} log_{10} 4$$

$$\frac{2.303}{40} \times 2log_{10} 2 = \frac{2.303}{40} \times 2 \times 0.3010$$

$$=0.0347 \, \text{min}^{-1}$$

At concentration of A = 0.01 M = [A]

Rate
$$\frac{dx}{dt}k[A]$$

 $\frac{dx}{dt} = 0.0347 \times 0.01$
= 3.47 × 10⁻⁴ mol L⁻¹ min⁻¹

373 (a)

$$2A + B \rightarrow A_2B$$

 $r_1 = k[A]^2[B]$
 $r_2 = k[2A]^2[B/2]$
Or $r_2 = 2k[A]^2[B]$
 $\therefore r_2 = 2r_1$

375 (a)

Given that, $k=2.34s^{-1}$ unit of 'k' suggest that the reaction is of 1st order , hence for 1st order reaction,

$$t_{1/2} = \frac{0.693}{k}$$
$$= \frac{0.693}{2.34}$$
$$= 0.30 \text{ s}$$

376 (c)

$$2.303 \log \frac{K_2}{K_1} = \frac{E_a}{R} \left[\frac{T_2 - T_1}{T_1 T_2} \right]; T_1 = 280 \text{ K},$$

$$T_2 = 290 \text{ K}; \frac{K_2}{K_1} = 2$$

$$2.303 \log \frac{K_2'}{K_1'} = \frac{E_a}{R} \left[\frac{T_2' - T_1'}{T_1' T_2'} \right]; T_1' = 290 \text{ K}; T_2$$

377 (c)

Arrheniu equation gives relation between rate constant and temperature of a reaction. It can be written in many forms, as

$$k = Ae^{-E_a/RT}$$

Where, k = rate constant

 $E_a = activation energy$

T =absorbption temperature

A =frequency factor

378 (c)

Order of reaction is sum of the power raised on concentration terms to express rate expression.

379 **(b)**
$$k = Ae^{-E/RT}$$

E is activation energy, it is that energy, which molecule must have to give the product.

381 (b)

$$\frac{K_{t+10}}{K_t} = \frac{r_t + 10}{r_t} = 2;$$

For an increase of temperature to 50° C, *i. e.*, 5 times, the rate increases by 2^{5} times, *i. e.*, 32 times.

382 (a)

$$A_2(g) \to B(g) + \frac{1}{2}C(g)$$

$$\therefore -\frac{d[A_2]}{dt} = 2 \cdot \frac{d[C]}{dt} = \frac{d[B]}{dt}$$

Also the increase in pressure is due to the formation of C because one mole of A_2 gives one mole of B and half mole of C.

Thus.

$$\frac{d[C]}{dt} = \frac{120 - 100}{5} = 4 \text{ mm min}^{-1}$$

383 (b)

The units of the rate constant for nth order reaction is $\left(\frac{mol}{L}\right)^{1-n}s^{-1}$

: for second order reaction,

Unit of rate constant $\left(\frac{mol}{L}\right)^{1-n} s^{-1}$ $mol^{-1}Ls^{-1} = L/mol - s$

384 (b)

However, order should not be suggested from chemical equation. This question is not correct.

385 (c)

$$A + B \rightarrow C$$

On doubling the concentration of A, rate of reaction increases by 4 times.

 \therefore rate $\propto [A]^2$ (w.r.t. A)

However, on doubling the concentration of B rate of reaction increases two times.

 \therefore rate $\propto [B]^2$ (w.r.t.B)

Thus, overall order of reaction =2+1=3

386 (4)

$$K_1 = A_1 e^{-E_1/RT}$$
 and $K_2 = A_2 e^{-E_2/RT}$ $\frac{K_1}{K_2} = \frac{A_1}{A_2} e^{(-E_1 + E_2)/RT}$; A_1 and A_2 are not given.

387 **(a**)

$$H_2 + I_2 \rightarrow 2HI$$

Rate of reaction,

$$= \frac{-d[H_2]}{dt} = \frac{-d[I_2]}{dt} = \frac{1}{2} \frac{d[HI]}{dt}$$
Or
$$= \frac{-2d[H_2]}{dt} = \frac{-2d[I_2]}{dt} = \frac{d[HI]}{dt}$$

388 **(c)**

87.5% completion means 3 half lives.

$$k = \frac{0.693}{t_{1/2}}$$

$$k = \frac{0.693}{10} \, \text{yr}^{-1}$$

$$t = \frac{2.303}{k} \log \frac{a}{a - x}$$

$$= \frac{2.303 \times 10}{0.693} \log \frac{a}{a - 0.99a}$$

$$=\frac{23.03}{0.693}\log 100$$

$$t = \frac{23.03}{0.693} \times 2 = 66.46 \,\text{yr} \approx 70 \,\text{yr}$$

391 (a)

Luminescence is the emission of light by a substance for any reason other than rise in its temperature.

- Chemiluminescence it is luminescence resulting from a chemical reaction, this is emission of visible light
- Phosphorescence if the luminescence persists significantly after the existing cause is removed, it is called phosphorescence if it does not, and it is called fluorescence.
- 3. **Bioluminescence** It is luminescence produced by living organism *e. g.*, firefly.

392 (b)

Reactions having low E_a are fast reactions and reactions having high E_a are slow reactions. If the E_a is high, then the number of effective collisions will be small and the reaction will be slow.

393 (b)

For the reaction,

$$3A \rightarrow 2B$$

$$Rate = -\frac{1}{3}\frac{d[A]}{dt} = +\frac{1}{2}\frac{d[B]}{dt}$$

$$\therefore + \frac{d[B]}{dt} = -\frac{2}{3} \frac{d[A]}{dt}$$

394 (a)

For first order reaction the half-life period is independent of the initial concentration of the reactants.

$$t_{1/2} = \frac{0.693}{k}$$

395 (a)

First order kinetics,
$$k_1 = \frac{0.693}{t_{1/2}} = \frac{0.693}{40} s^{-1}$$

Zero order kinetics,
$$k_0 = \frac{C_0}{2t_{1/2}} = \frac{1.386}{2\times20}$$

Hence,
$$\frac{k_1}{k_0} = \frac{0.693}{1.386} = 0.5$$

396 (a)

Given,
$$r = KC_A^{3/2} c^{-1/2}$$

$$\therefore \text{ order of reaction} = \frac{3}{2} + \left(-\frac{1}{2}\right)$$

$$=\frac{3-1}{2}=1$$

397 (b)

$$A_1 \cdot e^{-E_{a1}/RT} = A_2 \cdot e^{-E_{a2}/RT}$$

$$\frac{A_2}{A_1} = e^{(E_{a_2} - E_{a_1})/RT}$$

$$10^2 = \exp\left(\frac{1200}{RT}\right)$$

$$2\ln 10 = \frac{1200}{2T}$$

$$T = \left(\frac{600}{4.606}\right) K$$

398 (d)

Nature and concentration of the reactants and temperature of the reaction influence the rate of reaction. But molecularity does not affect the rate of reaction as it includes the number of atoms, ions or molecules that must collide with one another to result into a chemical reaction.

399 (a)

$$k_I = \frac{\Delta[R]}{\Delta t} = \frac{0.25}{0.05} = 5$$

$$k_{II} = \frac{\Delta[R]}{\Delta t} = \frac{0.60}{0.12} = 5$$

So reaction must be zero order

400 (b)

For zero order, x = Kt, i.e., y = mx + c; c = 0 or line passes through origin.

402 (d)

For an endothermic reaction

For a zero order reaction rate and rate constant are independent of reactant concentration

404 (c)

Rate constant is a characteristic constant for a given reaction.

405 (c)

The rate law for an elementary step can be given by simply observing the rate expression.

406 (a)

Threshold energy level is a characteristic of a reaction which may be however lowered, if catalyst is used.

407 (b)

$$t_{1/2} = 69.3 \,\text{sec}$$
 $\therefore K = \frac{0.693}{69.3} = 10^{-2} \,\text{sec}^{-1}$
Now, $r = K[A] = 10^{-2} \times 0.1 = 10^{-3} M \,\text{sec}^{-1}$

408 **(b)**

Rate =
$$k[N_2O_5]$$

 $2.4 \times 10^{-5} = 3.0 \times 10^{-5}[N_2O_5]$
 $[N_2O_5] = \frac{2.4 \times 10^{-5}}{3.0 \times 10^{-5}} = 0.8 \text{ mol L}^{-1}$

409 (b)

Enzyme catalysed reactions decreases energy of activation to greater extent.

410 (a)

 $k = Ae^{-E_a/RT}$, As temperature increases k increases exponentially.

411 (a)

For the homogenous gaseous reaction,

$$A + B \stackrel{k}{\to} c$$
, the rate law is $\frac{dx}{dt} = k[A][B]$

O

$$k = \frac{dx}{dt \times [A][B]}$$
$$mol \ L^{-1}$$

time \times mol $L^{-1} \times$ mol L^{-1} Or unit of rate constant 'k' is $mol^{-1}L$ time ^{-1}or $mol^{-1}Ls^{-1}$.

412 (a)

For zero order reaction, $K = \frac{x}{t}$

If x = a (complete reactant to react);

$$t = \frac{a}{K}$$

for two-third of a reaction,

$$[A]_0 = a, [A] = a - \frac{2}{3}a = \frac{a}{3}$$

$$t_{2/3} = \frac{2.303}{k} log \frac{[A]_0}{[A]}$$

$$= \frac{2.303}{k} log \frac{a}{\frac{a}{3}} = \frac{2.303}{k} log 3$$

$$t_{2/3} = \frac{2.303 \times 0.4771}{5.48 \times 10^{-14}} = 2.01 \times 10^{13} s$$

414 (d)

Rate constant almost gets doubled by the increase of 10°C in temperature. Hence, the rate constant at 310~K will be

$$= 3.2 \times 10^{-3} \times (2)^2$$

(\because increase in temperature=20 K) = 1.28×10^{-2} [$^{-1}$

415 (a)

Unit of $k = conc^{1-n}t^{-1}$

$$\left(\frac{mol}{L}\right)^{1-4} t^{-1}$$

$$\left(\frac{mol}{L}\right)^{-3} t^{-1}$$

Therefore, the unit of k is

 $\left(\frac{mol}{L}\right)^{-3}t^{-1}$ for fourth order reaction.

416 (d)

It is the definition of chemical kinetics.

417 (b)

$$r = K[N_2O_5]$$

$$\therefore [N_2O_5] = \frac{r}{K} = \frac{1.02 \times 10^{-4}}{3.4 \times 10^{-5}} = 3M$$

418 (a)

For 50% B reacted,
$$K_2 = \frac{2.303}{t_2} \log \frac{100}{50}$$

For 94% A reacted, $K_1 = \frac{2.303}{t_1} \log \frac{100}{6}$

$$\frac{K_2}{K_1} = \frac{t_1}{t_1} \times \frac{0.3010}{1.2218}$$

Since $t_2 = t_1$, because 50% *B* has reacted when 94% *A* has reacted.

$$\therefore \frac{K_2}{K_1} = \frac{0.3010}{1.2218} = 0.246 \text{ and } \frac{K_1}{K_2} = 4.06$$

419 (b)

For first order half-life period is independent of initial concentration

420 (c)

$$K_1 = Ae^{-Ea/RT}$$

$$K_2 = Ae^{-[E_a-2]/RT}$$

$$\frac{K_1}{K_2} = e^{2/RT} = e^{2/2 \times 10^{-3} \times 300} = 28$$

Rate = $K_1[A] - K_2[B]$ for a reversible reaction of I order opposed by I order.

422 (b)

For 1st order reaction

$$k = \frac{2.303}{t} \log \frac{[A]_0}{[A]}$$

If
$$[A]_0 = a$$
, $[A] = a - \frac{a \times 20}{100} = 0.80a$

 $t = 10 \min$

$$k = \frac{2.303}{10} \log \frac{a}{0.80 \ a} = \frac{2.303}{10} \times 0.0969$$

= 0.0223

If
$$[A]_0 = a$$
, $[A] = a - \frac{a \times 75}{100} = 0.25 \ a$

$$t = \frac{2.303}{k} \log \frac{[A]_0}{[A]}$$

$$= \frac{2.303}{0.0223} \log \frac{a}{0.25 \, a}$$

$$=\frac{2.303}{0.0223}\times0.6021$$

 $= 62.18 \, \text{min}$

423 (b)

Order of radioactive disintegration reaction is first. For example

 $_{88}Ra^{226} \rightarrow_{86} Rn^{222} +_{2}He^{4}$

Radium radon a-particle

424 (a)

$$C_4H_8 \xrightarrow{\Delta} 2C_2H_4$$

Mole at t = 0 a

Mole at t = t (a - x) 2x

When
$$\frac{2x}{a-x} = 1$$
, then $x = \frac{a}{3}$

$$t = \frac{2.303}{K} \log \frac{a}{a - x}$$

$$= \frac{2.303}{2.48 \times 10^{-4}} \log \frac{a}{a - \frac{a}{3}}$$

= 1635.2 second = 27.25 minute

425 (a)

If energy of activation for forward and backward reactions are same, reaction is neither exothermic not endothermic.

426 (c)

Half-life=6.93 min

$$k = \frac{0.693}{6.93} = 0.1$$

We know k_1 for per cent completion

$$k_1 = \frac{2.303}{t} \log\left(\frac{100}{1}\right)$$
$$0.1 = \frac{2.303}{t} \log\frac{100}{1}$$

$$0.1 = \frac{2.303}{t} \log \frac{100}{1}$$

$$0.1 = \frac{2.303}{t} \log 10^2$$

$$t = \frac{2.303 \times 2}{0.1} = 46.06$$

Rate = $K[NO]^2[O_2]^1$;

Concentration of each species are reduced by 1/2 on increasing volume to two times and thus, rate becomes 1/8 times of initial rate.

428 (c)

The rate of reaction is

$$rate = k[NO]^2[O_2]$$

When the volume is reduced to $\frac{1}{3}$, the concentration of each reactant is increased by 3

$$rate' = k[3NO]^2[3O_2]$$

$$= 27k[NO]^2[O_2]$$

$$\frac{\text{rate'}}{\text{rate}} = \frac{27k[\text{NO}]^2[\text{O}_2]}{k[\text{NO}]^2[\text{O}_2]}$$

rate' = 27 rate

429 (a)

$$K = 10^{-2} \text{mol}^{-1} \text{litre sec}^{-1}$$

$$= \frac{10^{-2} \times 1000 \times 60}{6.02 \times 10^{23}} \text{ cc molecule}^{-1} \text{min}^{-1}$$
$$= 9.9618 \times 10^{-22} \text{ cc molecule}^{-1} \text{ min}^{-1}$$

431 (d)

Activation energy of a reaction is constant at constant temperature hence, $E_1 = E_2$

Rate
$$(r) = k[A][B] = kab$$

When volume is reduced by one fourth then concentration becomes 4 times

Hence,
$$r' = k(4a)(4b)$$

$$= 16kab$$

$$r' = 16r$$

The reactant taken in excess obeys zero order reaction;

$$\therefore r = K[B].$$

434 (a)

For first order reaction,

$$t = \frac{2.303}{k} log \frac{[A]_0}{[A]}$$

$$[A]_0 = 5g, [A] = 3g k = 1.15 \times 10^{-3} s^{-1}$$

$$t = \frac{2.303}{1.15 \times 10^{-3}} log \frac{5}{3}$$

$$= \frac{2.303}{1.15 \times 10^{-3}} [log 5 - log 3]$$

$$= \frac{2.303}{1.15 \times 10^{-3}} \times 0.2218$$

435 (d)

For II order reaction $\frac{c_0 - c}{c} = K \cdot t \cdot c_0$.

436 (b)

We know,

Given,
$$T_1 = 27 + 273 = 300 KK_1 = k$$

$$T_{2} = 37 + 273 = 310K K_{2} = 2k$$

$$R = 8.314 \times 10^{-3} \text{ kJ}$$

$$2.303 \log \frac{k_{2}}{k_{1}} = \frac{E_{a}}{R} \left(\frac{T_{2} - T_{1}}{T_{1} - T_{2}} \right)$$

$$2.303 \log \frac{2k}{k} = \frac{E_{a}}{8.314 \times 10^{-3}} \times \left(\frac{310 - 300}{310 \times 300} \right)$$

$$2.303 \log 2 = \frac{E_{a}}{8.314 \times 10^{-3}} \times \frac{10}{93000}$$

$$2.303 \times 0.3010 = \frac{E_{a}}{8.314 \times 10^{-3}} \times 0.000108$$

$$E_{a} = \frac{2.303 \times 0.3010 \times 8.314 \times 10^{-3}}{0.000108}$$

$$= \frac{5.7633 \times 10^{-3}}{0.000108}$$

$$E_{a} = 53.363 \text{ kJ}$$

437 (d)

If the concentration of reactants is increased by x, then rate constant k remains same, ie, k because change of concentration has no effect on the rate constant

